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ABSTRACT

DOoCUMENTARY QUOTATIONS FROM WELL=KNOWN MEN IN THEIR
FIELDS ARE PRESENTED TO YIELD SOME INSIGHT INTO THE NATURE
OF MATHEMATICAL MODELS, SIMULATION, OPERATIONS RESEARCH,
DYNAMIC PROGRAMMING, CYBERNETICS, ETC. FoLLowinGg THESE
GENERAL CONCEPTS WHICH ARE A PREREQUISITE TO AN UNDER=-
STANDING OF THE CURRENT WEAPON SYSTEM JARGON, AN AIRBORNE
WEAPON SYSTEM |5 BROKEN DOWN INTO THE THREE MAJOR SUB-
SYSTEMS:

1. AIRFRAME AND ENVIRONMENT.
2. CONTROL MAJOR SUBSYSTEM.
3. GUIDANCE MAJOR SUBSYSTEM,

ONE OF THE MAJOR EFFORTS IN THE SCIENTIFIC SYNTHESIS
AND ANALYS5IS OF A PHYSICAL SYSTEM IS THE OBTAINING OF A
REALLISTIC MATHEMAT[CAL MODEL OF THE PHYSICALLY REALIZED
SYSTEM. THIS |S ESPECIALLY TRUE OF AN ADVANCED WEAPON
SYSTEM WHICH 5 BEING DESIGNED AGAINST A FUTURISTIC TAR-
GET {NOT YET IN EXISTENCE). THE MATHEMATICAL MODEL
(WHICH MUST BE COMPUTABLE) PROVIDES A FLEXIBLE ECONOMIC
MEANS OF PREDICTING SYSTEM BEHAVIOR FOR VARIOUS ENVIRON-
MENTAL AND TACTICAL CONDITIONS,

THE MATHEMATICAL MODELS ARE CONSIDERED AS TWO TYPES:
1. DETERMINISTIC MODELS.
2. ProBABILISTIC MODELS.

VECTOR METHODS ARE USED TO DEVELOP THE AIR FRAME
EQUATIONS OF MOTION, GIMBALLED BODY KINEMATICS, ROTATING
SPHEROIDAL EARTH EQUATIONS AND ROTATING SPHEROIDAL EARTH
GEOMETRY.

TRANSFORMATSON MATRICES FOR VARIOUS EULER ANGLE
SEQUENCES ARE DEVELOPED, MEANS OF GENERATING THE DIRECT!ON
COSINES AND A NUMBER OF 5YSTEMS OF EQUATIONS OF AIRFRAME
MOTION ARE PRESENTED. ’
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PART |

INTRODUCT ! ON

THE GUIDED MISSILE WEAPON SYSTEM [S ENTERING ITS SECOND DECADE OF POPU-
LARITY IN OUR LABORATORIES THROUGHCOUT THE COUNTRY. THE EARLIER DESIGN AND
PEVELOPMENT PROCEEDED ALONG RATHER UNCERTAIN LINES RELYING VERY HEAVILY ON
TRIAL AND ERROR,; WITH VERY LITTLE DETAILED OVER-ALL SYSTEM THEORETICAL
STUDIES. THE PRESENT STATE~OF-THE=ART STILL RELIES MUCH TOO HEAVILY ON THE
TRIAL AND ERROR APPROACH. HOWEVER, IT [S HOPED THAT WITHIN THE NEXT DECADE
THE CURRENT INVESTIGATIONS INTO WEAPON SYSTEMS EVALUATION, "OPTIMIZATION

THROUGH MULTI-DECISION PROCESSES,; ETC., WILL HAVE YIELDED FRU{ITFUL RESULTS.

THE UNDERSTANDING OF A COMPLEX PHYS|CAL PROCESS UNDER VARIOUS ENVIRON=-
MENTAL AND OPERATING CONDITIONS REQUIRES TERRIFIC TECHNICAL EFFORT . SINCE
MANY WEAPON SYSTEMS ARE DESIGNED AGAINST FUTURE TARGETS NOT YET BUILT, ONE
MUST RESORT TO AN EXTRAPOLATION OR APPROXIMAT|ON PROCESS THROUGH MODELS.

THE MATHEMATICAL MODEL 1S THE MOST SOPHISTICATED AND DESIRABLE TYPE OF MODEL
TC PREDICT SYSTEM BEHAVIOR.

THE OVERWHELMING MAJORITY OF THE PAST ANALYTICAL METHODS UTILIZED [N
SYSTEM DESIGN AND ANALYSIS HAVE BEEN BASED UPON THE 50 CALLED RIGID MATHE=-
MATICAL MODEL THAT 1S THE OETERMINISTIC MODEL. THIS INCLUDES CLASS|CAL
MECHANICS, CIRCUIT THEORY E£TC. EVEN THOUGH THE VARIABILITY OF THE THOUSANDS
OF MISSILE SYSTEM PARAMETERS AND VARIABLES HAVE BEEN RECOGNIZED IN THE PAST,
VERY LITTLE HAS BEEN DONE ABOUT [T BECAUSE OF THE MATHEMATICAL LIMITATIONS.
EVEN IF THE MATHEMATICS DEFINING S0 COMPLEX A STOCHASTIC PROBLEM WERE AVAIL=
ABLE MOST PRESENT DAY COMPUTERS ARE INADEQUATE TO HANDLE SUCH A TASK,

CONSEQUENTLY TWO MAJOR PARALLEL EFFfORTS ARE .TAKING PLACE. ONE |5 THE
DEVELOPMENT Of LARGER AND BETTER COMPUTING FACILITIES WHICH ARE THE PHYS|CAL
BUILDING BLOCK FROM WHICH THE MATHEMATICAL MODEL IS TRANSFORMED SACK [NTO A
PHYSICAL SYSTEM MODEL. SECOND 1S THE DEVELOPMENT OF PROBABILISTIC MATHE-
MATICAL MODELS WHICH REALISTICALLY REPRESENT THE WEAPON SYSTEM BEHAVIOR.

THE MATHEMATICAL DERIVATIONS IN THIS REPORT ARE FOR THE DEVELOPMENT OF
THE PETERMINISTIC MODEL. THE PRIMARY OBJECTIVE OF A WEAPCN SYSTEM 15 TO
VECTOR AN INTERCEPTOR SUFFICIENTLY CLOSE TO A TARGET SUCH THAT THE LETHALITY
OF THE WARHEAD WiITH RESPECT TO THE SUSCEPTIBILITY OF THE TARGET WILL CONSTIi =~
TUTE & "KkiLL." THE FIRST REQUIREMENT IS A GEOMETRICAL PROBLEM, CONSEQUENTLY
THE MATHEMATICAL STATEMENTS OF THE GUIDANCE AND CONTROL. PHILOSOPHIES ARE THE
THEORETICAL DESIGN EQUATIONS, WHICH ARE TO BE |INSTRUMENTED AND MECHANI ZED
INTO A PHYSICALLY REALIZED SYSTEM.

ACCEPTING THE GEOMETRICAL ASPECTS AS A BAS|C REQUIREMENT FOR AN UNDER=-
STANDING OF AIR BORNE WEAPON SYSTEMS, THE DETERMINISTIC MATHEMATICAL MODELS
OF AIRFRAME DYNAMICS, GIMBALLED BODY KINEMATICS, ROTATING SPHMERQIDAL EARTH
GEOMETRY ARE DERIVED BY VECTORS. s



THE MAJORITY OF THE REFERENCE FRAMES USED ARE ORTHONORMAL BASIS VECTORS.

BecaAusE OF THE NicE PROPERT!ES OF THE ORTHONORMAL BASIS VECTORS THE
DEVELOPMENT OF THE ORTHONORMAL TRANSFORMATIONS ARE HANDLED SLIGHTLY DIFFER=
ENTLY THAN NORMALLY ENCOUNTERED IN THE INTRODUCTORY TEST BOOKS,. IT IS FELT
THAT THIS APPROACH MORE READILY YIELDS A DEEPER PHYSICAL INSIGHT INTC THE
THREE DIMENSIONAL GEOMETRICAL PROBLEMS.

EACH MISSILE SYSTEM REQUIRES FROM FIVE TO TEN OR MORE SETS OF BASIS
YECTORS. CONSEQUENTLY BEFORE DISCUSSING ANY SYSTEM PHYSICAL QUANTITIES

" SUCH AS VELOCITIES, POSITIONS, FORCESy; ETC., THE QRIENTATION OF THE VARIOUS

SYSTEM BAS!S VECTORS ARE DEFINED. SINCE THE METRIC OF THE SPACE SPANNED BY

THE ORTHONORMAL BAS!S VECTORS IS SIMPLE R;.R = 1 o=
0 1 Jo
THE NEXT RELATIONSHIPS REQUIRED ISBTHE RElﬁATIONSHIP BETWEEN THE VARIOUS
BASIS VECTORS, FOR EXAMPLE R-i.BJ = Ri = sd,
_ J 1

WHICH YIELDS THE DIRECTION COSINE MATRIX BETWEEN THE DIFFERENT SETS OF BASIS
VECTORS. ’

AFTER THE ABOVE RELATIONSHIPS ON THE BASIS VECTORS ARE ESTABLISHED, THE
PHYSICAL QUANTITIES OF THE SYSTEMyWHICH ARE VECTORS, CAN BE HANDLED WIiTHOUT
ANY FURTHER ADC AS TO THE ORIENTATIONS OF THE MANY COMPONENTS.

THE DETERMINISTIC MATHEMATICAL MODELS DEF INING THE GUIDANCE AND CONTROL
PH|ILOSOPHIES WHICH ARE TO BE INSTRUMENTED, AND THE AIRFRAME EQUATIONS OF
MOTION WHICH ARE TO BE SIMULATED ARE NOT UNIQUE. THUS, IT 15 SHOWN BY EXAM~
" PLES HOW THE AIRFRAME EQUATIONS OF MOTION CAN BE WRITTEN IN A NUMBER OF WAYS.
ONE Of FHE CRITERION IN THE SELECTION OF A MATHEMATICAL MODEL IS THAT THE
MODEL VARIABLES CORRESPOND TO THE MEASURABLE VARIABLES OF THE PHYSICAL SYSTEM.

WEAPON SYSTEM CONCEPTS

QOF THE MULTITUDE OF COMPLEX CONTROL SYSTEMS IN OUR SOCIETY, SUCH AS THE
TELEPHONE SYSTEMS, AUTOMATED INDUSTRIAL PRQCESSES,; WEAPON SYSTEMS, ETC., THE
WEAPON SYSTEM IN PARTICULAR MAY BE SINGLED QUT AS A SYSTEM WHICH |T IS
DESIRED WILL ALWAYS BE IN THE SIMULATION STAGE. THAT 1S5, THAT IT WILL KREVER
HAVE TO BE UTILIZED [N |ITS DESIGN ENVIRONMENT, WAR.

THUS, FROM THIS BROADER SIMULATION CONCEPT, THE BREAD=BOARD SUB-SYSTEM
EXPERIMENT !N THE LABORATORY, THE RANGE FLIGHT TESTS, TO THE PLANNED MIL{~-
TARY MANEUVERS UTILIZING A|R DEFENSE MISSILES AGAINST TARGET DRONES ARE
EXAMPLES OF PHYSICAL SIMULATION. ALL OF THE INTERVENING SYNTHESIS AND ANALY-
515 IN THE DESIGN AND EVALUATION OF A WEAPON S5YSTEM ARE EiITHER PURELY PHYS|=
CAL SIMULATION, PURELY MATHEMATICAL OR VARIOUS DEGREES OF COMBINED PHYSI1CAL
AND MATHEMATICAL SIMULATION. THE VARIABLES 1IN THE.PHYSICAL AND MATHEMATICAL
SIMULATION MAY BE CONTINUOUS OR DISCRETE OR COMBINAT[{QONS THEREOF.



SIMULATION MAY BE CONSIDERED AS:

1. PHYSICAL SIMULATION.

2. MATHEMATICAL SIMULATION.

3. CoMBINED PHYSICAL AND MATHEMATICAL SIMULATION.

MATHEMATICAL SIMULATION 1S BASED ON THE MECHANIZING OR PROGRAMMING ON
COMPUTERS OF DEFINING EQUATIONS. THESE E£QUATIONS ARE IDEAL THEORETJCAL
EQUATIONS OR EQUATIONS BASED ON EMPIRICAL DATA. THE ULTIMATE SYSTEM SIMu~-
LATION EQUATIONS SHOULD REFLECT THE CHARACTERISTICS (TRANSFER FUNCTIONS,
NOISE ETC.} OF THE ACTUAL INSTRUMENTAT|ON DEVELOPED.

BEFORE DISCUSSING WEAPON SYSTEMS AS SUCH, A FEW GENERAL SYSTEM CONCEPTS
WHICH ARE IN CURRENT USAGE WiLL BE CONSIDERED MERELY TO INDICATE THE CHAL~

LENGING SCOPE AND MAGNITUDE OF THE PROBLEMS ENCOUNTERED.

QOPERATIONS RESEARCH

OPERATIONS RESEARCH 1S A VERY BROAD FIELD WHICH IS NOT TOO EASILY
DEFINED. {T 15 AN APPLIED SCIENCE UTILIZING ALL OF THE ACADEMIC DISCIPLINES,
PRIMARILY THE S0CIAL, BIQLOGICAL, AND PHYSICAL SCIENCES AND ITS PURPOSE IS
TO PROYIDE SOME QUANTITATIVE MEASURE AS A BASIS FOR DECISIONS. GOODE AND
MACHOL.I STATE THAT THE FUNDAMENTAL DIFFERENCE BETWEEN OPERAT!IONS RESEARCH
AND SYSTEMS ENGINEERING 15 THAT THE FORMER |5 INTERESTED IN MAKING PROCE-
DURAL CHANGES WHILE THE LATTER I35 INTERESTED IN MAKING EQUIPMENT CHANGES.

Dynamic ProgrAMMING

IS A MATHEMATICAL THEORY FOR HANDLING PROBLEMS [NVOLVING MULT!=STAGE
DECISION PROCESSES., BELLMAN TREATS TWO MAJOR TYPES OF PROBLEMS IN HIS BOOK
Dynamic PROGRAMMING®. FIRST HE CONSIDERS A MULTI{-STAGE ALLOCATION PROCESS
OF DETERMINISTIC TYPE WHICH FROM THE MATHEMATICAL POINT OF VIEW 1S A MULTI=
DIMENS | ONAL MAXIMIZATION PROBLEM WHICH 1S RELATED TO THE CALCULUS OF VAR A-
TIONS., OSECOND HE CONSIDERS A MULTI-STAGE DECISION PROCESS OF STOCHASTIC
TYPE.

BELLMAN STATES THAT DYNAMIC PROGRAMMING |5 DES|GNED TO TREAT MULTI~
STAGE PROCESSES POSSESSING CERTAIN INVARIANT ASPECTS, WHEREAS THE THEORY OF
LINEAR PROGRAMMING !5 DES:iGNED TO TREAT PROCESSES POSSESSING CERTAIN FEAw
TURES OF LINEARITY.

L By PerMISSION FroM CONTRoL SysTeMs ENGINEERING BY M. H. GooDE AND
R. E. MacHoL. CoPYRiGHT, 195(, MCGRAW-HILL Book Company, inc.

P
By PERMISSION FROM DYNaMIC PROGRAMMING BY R. BELLMAN: COPYRIGHTED
1957. PrinceToN UNIVERS!TY PrRESS,




LiNeAR PROGRAMMING

VAJDA3 STATES THAT LINEAR PROGﬁAMMING DEALS WITH A MAXIMIZING (OR MINI=
MIZING) FROBLEM THAT CANNOT BE SOLVED BY THE METHODS OF CALCULUS AND THAT
THE THEORY OF GAMES CAN BE SHOWN TO FORM A SPECIAL CASE OF THOSE OF LINEAR
PROGRAMMING.

RELAXATION METHODS

"THE WORD 'RELAXATION' HAS AT LEAST TWO MEANINGS TO ENGINEERS AND
MATHEMATICIANS. IN ITS NARROW SENSE, IT DENOTES A CLASS OF I TERATIVE
METHODS FOR SOLVING A SYSTEM OF LINEAR ALGEBRAIC EQUATIONS. THIS CLASS OF
METHODS 1S CHARACTERIZED BY THE SUCCESSIVE REDUGTION TO ZERD OF THE WORST
RESIDUAL. :

IN 1TS BROAD SENSE, RELAXATION INCLUDES THE APPROXIMATE REFORMULATION
OF BROAD CLASSES OF PHYSICAL PROBLEMS AS SYSTEMS OF LINEAR EQUATIONS TO BE
'SOLVED. IN THIS SENSE, RELAXATION HAS COME TO CONNOTE A LARGE PART OF THE
ART OF COMPUTING. THE ART OF COMPUTING IS THE ADAPTATION OF ALL SORTS OF
NUMER ! CAL TECHNIQUES, PROVED OR UNPROVED, TO THE END RESULT OF GETTING
ANSWERS TO NUMERICAL FROBLEWS.,

BESIDES THE ART OF COMPUTING, THERE I8 A SCIENCE OF NUMERICAL ANALYSIS,
WHOSE PRACTITIONERS SURVEY AND PROVE THEOREMS ABOUT KNOWN COMPUTING TECH-
NIQUES, DEVISE NEW ONES, AND TEST METHODS [N COOURERATION WITH COMPUTING
ARTISTS, CONTEMPORARY NUMERICAL ANALYSIS IS OFTEN GR{ENTED TOWARD THE
EXPLQITATION OF THE NEW ELECTRONIC DIGITAL COMPUTERS.",

THE NATURE OF MONTE CARLOD

"MONTE CARLO METHODS ARE DISTINGUISHED BY THEIR EXPERIMENTAL NATURE.
WHETHER OR NOT A PARTICULAR EXPERIMENTAL METHOD 1S.ELIGIBLE TO BE CALLED A
MonTe CARLO METHOD MAY BE LARGELY A MATTER OF PERSONAL TASTE. MoNTE CarLo
METHODS ARE NOT KNOWN FOR ALL PROBLEMS NOR DO SPECIFIC PROBLEMS NECESSARILY
ADMIT A UNIQUE SPECIFIC MONTE CARLO APPROACH. ON THE CONTRARY, THERE MAY
EX18T DIFFERENT MONTE CARLO METHODS FOR A GIVEN PROBLEM, NOT OBYVIOUSLY
RELATED ONE TO ANOTHER.

3 By PerMIssioN FRoM THE THEORY OF GaMes anp LINEAR PRoGRAMMING BY S,
VAJDA. COPYRIGHTED 1957 MeTHuEN AND Company, LTD.

4 By PERMISSION FRrROM MoDERN MaTHEMATICS For .THE EngiINger BY E. F,

BeckensacH, CoPYRIGHT 1955. McGraw=HILL Book CoMPANY, iNC.

5 Isib,



"FOR DEFINITENESS, WE SHALL CLASS AS A MONTE CARLO METHOD ANY PROCEDURE
WHICH INVOLVES THE USE OF STATISTICAL SAMPLING TECHNIQUES TO APPROXIMATE THE
SOLUTION OF A MATHEMATICAL OR PHYSICAL PROBLEM, FOR A HOMELY ILLUSTRATION,
CONSIDER THE VETERAN POKER PLAYER WHO KNOWS (AT LEAST SUBCONSCIOUSLY) THE
APPROXIMATE PROBABILITY OF FILLING AN 'INSIDE STRAIGHT,' HAVING LEARNED iT
THE HARD WAY. THE REQUIRED PROBABILITY COULD, OF COURSE, BE CALCULATED
DIRECTLY BUT IT 15 LIKELY THAT MOST POKER PLAYERS HAVE LEARNED BY EXPERIENCE
RATHER THAN BY DIRECT CALCULATION. IN SUCH INSTANCES THE PLAYER MAY BE SAID
TO HAVE PROFITED BY A MonTE CARLO APPROACH.

"MONTE CARLO METHODS HAVE AN ANCIENT AND HONORABLE HISTORY, WITH RECORDED
EXAMPLES DATING BACK AT LEAST A FEW CENTURIES. THE EARLY P1ONEERS [N THE
THEQRY OF PROBABILITY WERE AWARE OF THE RELATIONSHIP OF CERTAIN FUNCT|ONAL
EQUATIONS TO THE SOLUTIONS OF PROBABILITY PROBLEMS ARISING FROM THE ANALYS S
OF GAMES OF CHANCE. MORE RECENTLY, THERE HAVE BEEN KNOWN TO THE PHYSICISTS
SIMILAR RELATIONSHIPS BETWEEN PROBABILISTIC MODELS OF PARTICLE BEHAVIOR AND
VARIOUS CLASSICAL FUNCTIONAL EQUATIONS. MOST COMMONLY, THE SOLUTION OF THESE
PROBLEMS HAS PROCEEDED, BY CLASSICAL METHODS OF ANALYSIS, FROM THE FUNCT|ONAL
EQUATION TO WHICH THE PROBABILISTIC MODEL REDUCES. THE TERM '"MONTE CARLO’
WAS POPULARIZED, IN VERY RECENT YEARS, MOSTLY IN CONNECTION WITH PROBLEMS
OF STATISTICAL MECHANICS, PARTICLE DIFFUSION, AND THE LIKE, WHEN 1T WAS
OBSERVED THAT IN CASES WHICH DID NOT YIELD READILY TO CLASSICAL ANALYSIS
THE NUMERICAL COMPUTATION OF APPROXIMATE SOLUTIONS COULD SOMETIMES BE
APPROACHED THROUGH THE PROBABILISTIC MODEL. THE ANALYTICAL MODEL WAS BY~
PASSED BY THE PROCESS OF TRACING THE HISTORIES OF NUMBERS OF INDIVIDUAL
PARTICLES, EACH EXHIBITING RANDOM BEHAVIOR IN ACCORDANCE WITH THE PROBAB] -
LISTIC MODEL, WITH THE RANDOM ELEMENTS PROVIDED BY A CHANCE DEVICE OR BY
REFERENCE TO TABLES OF RANDOM NUMBERS. EACH PARTICLE HISTORY MIGHT BE
CONSIDERED A SINGLE EXPERIMENT, THE ACCURACY OF THE RESULT DEPENDING ON THE
STATISTICAL APPROXIMATION OBTAINED FROM THE AGGREGATION OF MANY SUCH EXPER /-
MENTS.

"THE CLASSICAL DIRECTION OF ANALYSIS WAS THUS REVERSED, W(TH THE COMPUTA-
TION PROCEEDING, IN FIRST APPLICATIONS, [N DIRECT ANALOGY TO STANDARD STATIS-
TICAL MODELS SUGGESTED BY THE PHYSICAL PROBLEMS. SINCE THEN MUCH INGENUITY
HAS BEEN APPLIED TO THE MODIFICATION OF THE STATISTICAL MODELS AND TO.THE
INVENTION OF NEW MODELS, NOT STRICTLY ANALOGOUS TO THE PHYSICAL PROBLEM, [N
ORDER TO PERMIT MORE ECONOMICAL CALCULATION OF APPROXIMATE SOLUTIONS TO°THE
ORIGINAL PROBLEM. OSTIMULATED BY THESE APPLICATIONS, MATHEMATICIANS HAVE
BEGUN TO DEVOTE CONSIDERABLE ATTENTION TO THE SEARCH FOR PROBABILITY MODELS
WHICH WILL PERMIT THE APPROXIMATE SOLUTION OF FUNCTIONAL EQUATIONS OF VARIOUS
TYPES, WITHOUT REFERENCE TO UNDERLYING PHYSICAL SYSTEMS. METHODS E£XI1ST FOR
CERTAIN CLASSES OF PARTIAL DIFFERENTIAL E£QUATIONS, INTEGRAL EQUATIONS, E!GEN-
VALUE PROBLEMS, AND SIMULTANEOUS LINEAR EQUATIONS."



QuoTinG FROM MEYER AT A SYMPOSIUM ON MonTE CaARrLo MeTHODS 16 "THE WORD
PROBABILITY HAS NOT ALWAYS MEANT EXACTLY THE SAME THING TO THOSE WHO USE AND
TO THOSE WHO WRITE ABOUT PROBABILITY. IT 1S NOT STRANGE, THEN, THE TERM
'"MONTE CARLO METHODS' SHOULD LIKEWISE BE SUBJECT TO VARIOUS INTERPRETATIONS."

HOUSEHOLDER INDICATES THAT THE NOVELTY OF THE MoNTE CARLO METHOD LIES
IN THE SUGGESTION THAT WHERE AN EQUATION ARISING IN A NONPROBABILISTIC CON~
TEXT DEMANDS A NUMERICAL SOLUTION NOT EASILY OBTAINABLE BY STANDARD NUMERICAL
METHODS, THERE MAY EXIST A STOCHASTIC PROCESS WITH DISTRIBUTIONS OR PARA-
METERS WHICH SATISFY THE EQUATION, AND T MAY ACTUALLY BE MORE EFFICIENT TO
CONSTRUCT SUCH A PROCESS AND COMPUTE THE STATISTICS THAN ATTEMPT TO USE
THOSE STANDARD METHODS. THESE SUGGESTIONS SEEM TO HAVE .BEEN DUE TO ULaM,
voN NEUMANN AND ENRICO FERMI. . )

HouUSEHOLDER POINTS OUT THAT THE PROBLEM ENCOUNTERED WHEN ONE 1S GiVEN
AN EQUATION {S WHETHER OR NOT THERE IS A STOCHASTIC PROCESS WHICH YIELDS A
DISTRIBUTION SUCH THAT IT, OR SOME SET OF ITS PARAMETERS, SATISFIES THE
EQUATION. |IF S0, WHAT IS THE EFF}CJ/ENT METHOD OF OBTAINING THE STATISTICS
AND ASSESSING THEM?T HE FURTHER STATES THAT THE METHOD |5 PROBABLY NEVER
EFFICIENT FOR YIELDING AN ENTIRE DISTRIBUTION UNLESS THE DISTRIBUTION 1S
OBTAINED ONLY BY INTEGRATING OUT OTHER VARIABLES, AND THAT BASICALLY THE
METHOD IS ONE OF NUMERICAL INTEGRATION,

ACCORDING TO wEINER, THE THEQRY OF THE TRANSMISSION OF MESSAGES IN
ELECTRICAL ENGINEERING 15 A PART OF A LARGER FIELD WHICH INCLUDES NOT ONLY
THE STUDY OF LANGUAGE BUT THE STUDY OF MESSAGES A5 A MEANS OF CONTROLLING
MACHENERY AND SQCIETY, THE DEVELOPMENT OF COMPUTING MACHINES AND OTHER SUCH
AUTOMATS, CERTAIN REFLECTIONS UPCN PSYCHOLOGY AND THE NERVOUS SYSTEM, AND A
TENTATIVE NEW THEORY OF SCLIENTIFIC METHOD. THIS LARGER THEORY OF MESSAGES
ACCORDING TO WEINER IS A PROBABILISTIC THEORY, AN INTRINSIC PART OF THE
MOVEMENT THAT OWES !TS ORiIGIN TO WiLLARD GiB8S.

WEINER STATES THAT THE ACT OF GIVING AN ORDER TO A MACHINE 15 NOT
ESSENTIALLY DIFFERENT FROM THE ACT OF GIVING AN ORDER TQ A PERSON, SINCE AS
FAR AS HIS CONSCIOUSNESS |5 CONCERNED HE 15 AWARE OF THE ORDER THAT HAS GONE
OUT AND THE S5iGNAL OF COMPLIANCE THAT HAS COME BACK. TO HIM PERSONALLY, THE
FACT THAT THE SIGNAL IN 1TSS INTERMEDJATE STAGES HAS GONE THROUGH A MACHINE
RATHER THAN THROUGH A PERSON IS5 IRRELEVANY AND DOES NOT GREATILY CHANGE HIS
RELATION TO THE SiGNAL. [HUS, HE CLAIMS, THE THEORY OF CONTROL I[N ENGINEER-
ING, WHETHER HUMAN OR ANIMAL OR MECHANICAL, S A CHAPTER IN THE THEORY OF
MESSAGES.

WEINER POINTS OUT THAT THERE ARE DETAILED DIFFERENCES IN MESSAGES AND
IN PROBLEMS OF CONTROL, ROT ONLY BETWEEN A LIVING ORGANISM AND A MACHINE,
BUT WITHIN EACH NARROWER CLASS OF BEiNGS. WEINER COINED THE WORD LYBERNETICS

6

By PERMISSION FROM SyMpPosiuM oN MonTE CarLo MeThobps By H. A. Mever.
CoPYRIGHTED 1956. JoHn WILEY anD Sons, INC.




AND POINTS OUT THAT ITS PURPOSE 1S TO DEVELOP A LANGUAGE AND TECHNIQUES THAT
WILL ENABLE US TO ATTACK THE PROBLEM OF CONTROL AND COMMUNICATEION IN GENERAL,
AND ALSO TO FIND THE PROPER REPERTORY OF IDEAS AND TECHNIQUES TO CLASSIFY
THEIR PARTICULAR MANIFESTATIONS UNDER CERTAIN CONCEPTS,

MATHEMAT ICAL MODEL

Dr., BeELLMAN OF _THE RanD CORPORATION YERY NICELY STATES THE ROLE OF THE
MATHEMAT | CAL MODEL.

"THE GOAL OF THE SCIENTIST IS TO COMPREHEND THE PHENOMENA OF THE UNI=-
VERSE HE OBSERVES AROUND HIM. TO PROVE THAT HE UNDERSTANDS, HE MUST BE ABLE
TO PREDICT, AND TO PREDICT, ONE REQUIRES QUANTITATIVE MEASUREMENTS, A
QUALITATIVE PREDICTION SUCH AS THE OCCURRENCE OF AN ECLIPSE OR AN EARTHQUAKE
OR A DEPRESSION SOMETIME IN THE NEAR FUTURE DOES NOT HAVE THE SAME SATISFYING
FEATURES AS A SIMILAR PREDICTION ASSOCIATED WITH A DATE AND TIME, AND PER-
HAPS BACKED UP BY THE OFFER OF SIDE WAGER.

"To PREDICT QUANTITATIVELY ONE MUST HAVE A MECHANISM FOR PRODUCING NUM~-
BERS, AND THIS NECESSARILY ENTAILS A MATHEMATICAL MODEL. IT SEEMS REASONABLE
TO SUPPOSE THAT THE MORE REALISTIC THIS MATHEMATICAL MODEL, THE MORE ACCURATE
THE PREDICTION.

"THERE 15, HOWEVER, A POINT OF DIMINISHING RETURNS. THE ACTUAL WORLD
1S EXTREMELY COMPLICATED, AND AS A MATTER OF FACT THE MORE THAT ONE STUDIES
IT THE MORE ONE 1S FILLED WITH WONDER THAT WE HAVE EVEN "ORDER OF MAGN|TuDe"
EXPLANATIONS OF THE COMPLICATED PHENOMENA THAT OCCUR, MUCH LESS FAIRLY CON=
SISTENT "LAWS OF NATURE." |IF W& ATTEMPT TO INCLUDE TOO MANY FEATURES OF
RELAITY IN OUR MATHEMATICAL MODEL, WE FIND OURSELVES ENGULFED BY COMPL{CATED
EQUATIONS CONTAINING UNKNOWN PARAMETERS AND UNKNOWN FUNCTIONS. THE DETER-
MINATION OF THESE FUNCTIONS LEADS TO EVEN MORE COMPLICATED EQUATIONS WITH
EVEN MORE UNKNOWN PARAMETERS AND FUNCTIONS, AND SO ON. TRULY A TALE THAT
KNOWS NO END.

"1F, ON THE OTHER HAND, MADE TIMID BY THESE PROSPECTS, WE CONSTRUCT OUR
MODEL IN TOO SIMPLE A FASHION, WE SOON FIND THAT [T DOES NOT PREDICT TO SUIT
OUR TASTES.

"IT FOLLOWS THAT THE SCIENTIST, LIKE THE PILGRIM, MUST WEND A STRAIGHT
AND NARROW PATH BETWEEN THE PITFALLS OF OVERSIMPLIFICATION AND THE MoRrRASS oFf
OVERCOMPLICATION,

"KNOWING THAT NO MATHEMATICAL MODEL CAN YIELD A COMPLETE DESCRIPTION OF
REALITY, WE MUST RESIGN QURSELVES TO THE TASK OF USING A SUCCESSION OF MODELS
OF GREATER AND GREATER COMPLEXITY IN OUR EFFORTS TO UNDERSTAND. I[F wE
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OBSERVE SIMILAR STRUCTURAL FEATURES POSSESSED BY THE SOLUTIONS OF A SEQUENCE
OF MODELS, THEN WE MAY FEEL THAT WE HAVE AN APPROXIMATION TO WHAT IS CALLED }
A LAW OF NATURE . . . .

IT FOLLOWS THAT FROM A TELEOLOGICAL POINT OF VIEW THE PARTICULAR
NUMERICAL SDLUTION OF ANY PARTICULAR SET OF EQUATIONS IS OF FAR LESS IMPOR-
TANCE THAN THE UNDERSTANDING OF THE NATURE OF THE SOLUTION, WHICH S TO SAY
THE INFLUENCE OF THE PHYS|CAL PROPERTIES OF THE SYSTEM UPON THE FORM OF THE
SOLUTION," :

BECKENBACH STATESS8 "MaNY SCIENTIFIC INVESTIGATIONS ARE BASED ON THE
|SOMORPHISM, OR SAMENESS OF STRUCTURE, OF DIFFERENT PHYSICAL AND MATHEMATI~
CAL SYSTEMS. THIS IS PARTICULARLY TRUE OF THE SUBJECTS TREATED IN THE
PRESENT BOOK, WITH THEIR SOMETIMES MORE AND SOMETIMES LESS PRECISE MATHE-
MATICAL MODELS. AT TIMES THE MODELS HAVE BEEN CONS |DERABLY ALTERED THROUGH
TRANSFORMATIONS BUT THE NEW MODELS HAVE REMAINED VALUABLE BECAUSE OF THE
INVARIANCE OF CERTAIN OF THEIR ASPECTS UNDER THE TRANSFORMATIONS."

ACCORDING TO JOHN HAMMERSLEY oOF TRINITY COLLEGE, OXFORD) VERY FEW MATH
TEACHERS HAVE EVER USED MATHEMATICS IN PRACTICE, AND THE MATHEMATICAL EXAM|-
NATION PROBLEMS ARE Y“SUALLY CONSIDERED UNFAIR !F INSOLUBLE OR IMPROPERLY
DESCRIBED. WHEREAS THE MATHEMATICAL PROBLEMS OF REAL LIFE ARE ALMOST |NVARI-
ABLY INSOLUBLE AND BADLY STATED, AT LEAST IN THE FIRST INSTANGCE. HE STATES
THAT IN REAL LIFE, THE MATHEMATICIAN'S MAIN TASK IS TO FORMULATE PROBLEMS BY
BUILDING AN ABSTRACT MATHEMAT{CAL MODEL CONS!STING OF EQUATIONS, WHICH SHALL
BE SIMPLE ENOUGH TO SOLVE WiTHOUT BEING SO CRUDE THAT THEY FAIL TO MIRROR
REALITY, HAMMERSLEY CONSIDERS THE TASK OF SOLVING EQUATIONS AS A MINOR
TECHNICAL MATTER COMPARED WITH THIS FASCINATING AND SOPHISTICATED CRAFT OF
MODEL-BUILDING, WHICH CALLS FOR BOTH CLEAR, KEEN COMMON SENSE AND THE H{GHEST
QUALITIES OF ARTISTIC AND CREATIVE IMAGINATION.

THE INCREASIMG COMPLEXITY OF WEAPON SYSTEMS NECESSITATES THE TEAM APPROACH AS
EXFRESSED BY REESE:T "UNLESS A MAN ENJOYS WORKING WITH OTHERS, UNLESS HE IS
INTERESTED IN CONSIDERING OTHER PEOPLE'S PROBLEMS, UNLESS HE FINDS (T INTER~
ESTING TO EVOLVE THE APPROPRIATE MATHEMATICAL MODEL FOR HANDLING Si1TUATIONS
THAT ARE OFTEN NOT CORRECTLY OR CLEARLY DESCRIBED, AND TO BRING HIS MATHE-
MATICAL MATUR!TY TO BEAR ON SiTUATIONS HE HAS NOT HIMSELF SELECTED HE PROBABLY
DOES NOT BELONG IN INDUSTRY. ONE RELEVANT RESULT OF THE SURVEY WAS NOT A
SURPRISE, BUT THE STATIST!CS DO SERVE TO CORROBORATE A STRONG PRIOR JMPRESSION.
GROUP RESEARCH IS VIEWED MORE ‘FAVORABLY BY INDUSTRIAL MATHEMATIC1ANS, AND
THERE 1S MORE OF !T AMONG THEM THAN AMONG UNI[VERSITY PEGPLE » . . .
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"THE APPLICATION OF BOOLEAN ALGEBRA TO COMPUTER DESIGN, OF GRQUP THEORY
TO COMMUNICATIONS THEORY, OF NUMBER THEORY TO NUMERICAL ANALYSIS, AND OF
NONCOMMUTAT}VE ALGEBRA AND GROUP THEORY TO NUCLEAR PHYSICS LEAVES ONE WITH
THE QUITE CORRECT IMPRESSION THAT ALMOST ANY MATHEMATICS IS5 APPLICABLE, AND
THAT BROADLY EDUCATED MATHEMAT|CIANS ARE NEEDED . . . .

") HAVE CHOSEN TO QUOTE FROM A BRITISH REPORT TO EMPHASIZE THE SIMILARITY
OF THE SITUATION tN ENGLAND AND THE. UNITED STATES. [N OUR COUNTRY, TOO, A
SAMPLING OF PROBLEMS CONFRONTED IN INDUSTRY SHOWS A BROAD SPECTRUM OF MATHE=-
MATICAL DISCIPLINES IN USE IN THE ATTEMPT TO FIND SOLUTIONS. ON A RECENT
v1S1T To THE Bert TELEPHONE LABORATORIES, | WAS TOLD OF A FEW OF THE PROBLEMS
IN WHICH SOME MEMBERS OF THE MATHEMATICAL RESEARCH GROUP ARE INTERESTED.
ONE OF THESE ORIGINATED IN THE FINANCIAL DEPARTMENT OF THE AMERICAN TELE-
PHONE AND TELEGRAPH COMPANY, AND CONCERNED THE CHARGES FOR PRIVATE WIRE
SERVICES. THE MATHEMATICAL RESULT THAT WAS DERIVED AT BELL LABORATORIES GAVE
A NEW THEOREM IN THE THEORY OF TREES. INTERESTINGLY ENOUGH THE SAME RESULT
SEEMS TC HAVE BEEN FOUND AT ABOUT THE SAME TIME AT THE MaTHEMATicAL CENTRUM
IN AMSTERDAM WHEN, IN THE DESIGN OF A NEW COMPUTER, THE OLD COMPUTER WAS
ASKED TC DETERMINE WHAT WIRING WOULD KEEP THE TOTAL LENGTH OF WIRE AS SMALL
AS POSSIBLE. IN THE TeELeEPHONE CoMPANY'S PROBLEM, THE FEDERAL COMMUNICATIONS
CoMMISSION REQUIRES THAT THE CHARGES BE BASED ON THE SHORTEST NETWORK THAT
CAN BE CONSTRUCTED CONNECTING PLANTS AT SEVERAL LOCATIONS) IN THE COMPUTER
PROBLEM, THE EFFORT 1S TO MINIMIZE THE NETWORK OF WIRES CONNECTING A COLLEC-
TION OF PINS5. THE THEQREM PREVIOUSLY EXISTING IN THE LITERATURE REQUIRED
THAT THE MINIMUM DISTANCE BETWEEN ANY 'TWO POINTS BE FOUND ——— A REQUIREMENT
POORLY ADAPTED TO COMPUTATION. THE NEW RESULT GIVES A SYSTEMATIC PROCEDURE
THAT CAN EASILY BE TRANSLATED INTO A MACHINE PROGRAM., WE HAVE HERE A 5|TUA=
TION THAT ILLUSTRATES THE NEW REQUIREMENT OFTEN FOUND IN THE INDUSTRIAL
APPLICATiONS OF MATHEMATICS = TO FIND A NEW THEOREM WHICH WILL ENABLE US 7O
EXPLOIT THE SPEED OF ELECTRONIC COMPUTERS. FOR INDUSTRIAL APPLICATIONS, THE
COMPUTABILITY OF A METHOD I$ EVEN MORE IMPORTANT THAN ELEGANCE i5 FOR PROOF
{N PURE MATHEMATEICS. '

"ANOTHER BELL LABORATORIES PROBLEM CONCERNS COMMUNICATIONS IN THE
PRESENCE OF NQISE, AND INVOLVES QUANTIZING THE SENDING OF BITS OF INFORMA-
TioN. THE PROBLEM IS TO TRANSLATE INTO USABLE FORM AN EXISTENCE PROOF AND
ASYMPTCTIC THEOREMS DUE TO SHANNON., THOUGH THE PROBLEM IS UNSOLVED, SOME
PROGRESS HAS BEEN MADE USING THE THEORY OF GROUPS . . . .

"A NEW KIND OF DEMAND FOR MATHEMATICIANS HAS BEEN PRODUCED BY THE CUR-
RENT EXPANSION OF THE USE OF CPERATIONS RESEARCH iIN INDUSTRY. THIS 15 A
TYPE OF NON-ACADEM!C EMPLOYMENT THAT RELIES LESS ON SPECIFIC TECHNIQUES THAN
DO THE TRADITIONAL FIELDS OF APPLIED MATHEMATICS. A LARGE EXPANSION IN THIS
TYPE OF ACTIVITY IS IN PROCESS, WITH A SIGNIFJCANT INCREASE IN THE OPPQOR-
TUNITIES FOR MATHEMATICIANS o o « =«

"THE TRAINING NEEDED FOR EFFECTIVE WORK AS AN JNDUSTRIAL METHEMATICIAN
HAS BEEN DESCRIBED TO ME BY HENDRIK BODE, ON THE BASIS OF HIS EXPERIENCE AT
BELL TELEPHONE LABORATORIES. IN HIS JUDGMENT, AN APPLIED MATHEMATICIAN
NEEDS TO SERVE ONE, OR PERHAPS SEVERAL, !NTERNSHIPS. FOR EXAMPLE, IN THESE



DAYS OF AUTOMATICALLY SEQUENCED COMPUTING MACHINES A THOROUGH ACQUAINTANCE
WITH NUMERICAL METHODS, STANDARD APPROXIMATING PROCEDURES, AND THE VARIOUS
WAYS OF ATTACKING PROBLEMS MUMERICALLY "ARE OBVIOUSLY OF SPECIAL IMPORTANCE .
THIS IS5 THE SORT OF ABILITY WHICH 15 BEST LEARNED BY ACTUAL PRACTICE IN A
COMPUTING CENTER. THE COMPUTING FACILITY NEED NDT BE A LARGE ONE = IN FACT
THERE MAY BE A POSITIVE ADVANTAGE IN HAVING TO USE ONE'S INGENUITY TO QOVER-
COME MECHAN [CAL INADEQUACIES; BUT A FIRST=HAND ACQUAINTANCE WITH NUMBERS, OF
THE SORT THAT 1S DEVELOPED ONLY BY A CERTAIN AMOUNT OF LABORATORY WORK, I35
ALMOST ESSENTIAL.

"ANOTHER SIGNIFICANT INTERNSHIP COULD BE SPENT IN A STATISTICAL CENTER.
THIS WOULD GIVE THE ASPIRING APPLIED MATHEMATICIAN A BETTER APPRECIATION
THAN HE COULD PROBABLY HAVE OTHERWISE OF THE RELIABILITY OF THE FACTUAL
STATEMENTS TO WHICH HE WiLL BE SUBJECTED LATER, AND WOULD ALSC GIVE HIM A
FEELING FOR THE PROBABLE SIGNIFICANCE, OR LACK OF SIGNIFICANCE, OF A GIVEN
‘ELEMENT QOF A LOGICAL FRAME~WORK IN A PARTICULAR SITUATION.

_ "ANOTHER PROFITABLE, IF BRIEF, INTERNSHIP MIGHT BE SERVED AS A PARTICI-
PANT iN AN ACTUAL FUNCTIONING APPLIED MATHEMATICS GROUP IN AN INDUSTRIAL OR
SIMILAR ENVIRONMENT. TH!S WOULD BE PARTICULARLY USEFUL (F |T OCCURRED BEFORE
THE END OF THE FORMAL TRAINING PERIOD. IT MiGHT, OF COURSE, BE POSSIBLE TO
FIND WAYS OF MEETING MOST, IF NOT ALL, OF THESE INTERNSHIP REQUIREMENTS IN

A SINGLE PLACE."

10

GOODE AND MACHOL DISTINGUiISK BETWEEN FQUR DIFFERENT TYPES OF MATHE-

MATICAL MODELS:

1. THE ANALYTICAL RI1G{D MODEL.

2. THE NUMER;CAL R!GID MODEL.

3. THE ANALYY;CAL PROBABIL!TY MODEL.

I, THE NUMER:CAL PROBABILITY MODEL OR MonTe CARLO MODEL.

THE FiRST TWO TYPES ARE WELL KNOWN AND OF THE NATURE OF OHM'S AND
Newron's LA¥?, HOWEVER, THE LAST TWO TYPES ARE NOT A5 FAMILIAR, AS WELLER
POINTS OUTS® "A SOMEWHAT DIFFERENT SOURCE OF MATHEMATICAL COMPULSION IS
DER;VED FROM A CONSIDERATION OF THE STATiSTICAL NATURE OF CERTAIN PHYSICAL

SiTUAT.ONS. OSTUDENTS OF THE LIFE SC!ENCES HAVE LONG USED STATISTICAL TECH-
NiQUES BECAUSE THE SYSTEMS UNDER STUDY WERE EXCEEDINGLY COMPLEX AND BECAUSE
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MANY VARIABLES AFFECTING THEM COULD NOT BE CONTROLLED. ENGINEERS, ON THE
OTHER HAND, HAVE, IN THE PAST, BEEN LARGELY CONCEPNED WiTH DETERMINiSTiC
PROBLEMS. BUT THE COMING OF COMPLEX!TY iN TECHNOLOGICAL DEVELOPMENT HAS LED
MORE AND MORE TGO CONSIDERATIONS OF STOCHASTIC RATHER THAN DETERMINISTIC
BEHAVIOR. "

GooDE AND MACHOL CLASS PROBABILITY AND SIMULATION AS THE BASIC TOOLS
OF SYSTEM DESIGN.'2 "THERE 1S AN EXTENSIVE LiTERATURE ON THE SUBJECT OF THE
LOGICAL BASES OF PROBABILITY. THERE ARE SEVERAL APPROAGCHES TO THI1S PHILO=
SOPHICAL QUESTION. ONE, REPRESENTED BY RE!CHENBACK AND vOnN MISES, ATTEMPTS
TO DEFINE PROBABILITY ON A FREQUENCY BASES; THAT 15, IF FTHE NUMBER OF EXPERI~
MENTS IS ALLOWED TO APPROACKE INFINITY, THEN THE PROBAB!LITY OF A FAVORABLE
OUTCOME MAY BE DEFINED AS THE LIMIT OF THE PROPORT!ON OF THE EXPER!MENTS
WHI1CH ARE FAVORABLE. A SECOND APPROACH, REFRESENTED BY CARNAP, JEFFREYS,
AND KEYNES, VIiEWS PROBABILITY AS A LOGICAL RELAT!ON ANALCGOUS TO THAT OF
LOGICAL IMPLICATION BUT ADMITTING OF DEGREES. A THIRD APPROACH, REPRESENTED
BY KOOPMAN AND KOLMOGOROFF, ATTEMPTS TO DEFINE PROBAB!LITY ON AN AXIOMATIC
BAS!S; T STATES THAT PROBABILITY 1S A GAME TO BE PLAYED ACCORDING TO CERTAIN
RULES, WORKED OUT ON A STRICT MATHEMATICAL BAS!S. OQUR OWN USE WILL BE MORE
LIKE THE LAST."

GoODE AND MACHOL STATE THAT PROBABILITY 1S THE DEDUCTIVE SCLENCE OF
CHANCE N THAT [T PREDICTS THE OUTCOME RESULTING FROM A SET OF ASSUMPTIONS.
WHEREAS STATISTICS !S THE !NDUCTIVE SCIENCE OF CHANCE IN THAT T ENABLES ONE
TO MAKE INFERENCES ABOUT THE NATURE OF THE UNDERLYING DISTRIBUTJON AND ESTI-
MATES OF ITS5 PARAMETERS FROM KNOWLEGGE OF THE OUTCOMES OF EXPERIMENTS.

WIENER HAS THE FOLLOWING TO SAY ABOUT PROBABILITY AND STATiISTICS: -

o « « As STATISTICAL THEORY !S ESSENTIALLY A BRANCH OF PROBABILITY THEORY
AND AS PROBABILITY THEORY HAS BEEN REDUCED TO THE THEORY OF LEBESQUE MEASURE
AND LEBESQUE (NTEGRATION BY A SERIES OF WRITERS {NCLUDING KoLMOGOROFF,
Kninternine, CRAMER; DooB, LEVY, AND THE AUTHOR; . . o o

M, LoEVE'3 ON PROBABILISTIC MODELS STATES: "PROBABILITY THEORY 1S CON-
CERNED WiTH THE MATHEMATIiCAL ANALYS!S OF THE !NTUITIVE NOTION OF ‘CHANCE'
OR "RANDOMNESS,' WHICH, LIKE ALL NOTiONS, |S BORN OF EXPERIENCE. THE QUANTI~
TATIVE (DEA OF RANDOMNESS FIRST TOOK FORM AT THE GAMING TABLES, AND PROBA-
BILITY THEORY BEGAN, W;iTH PascaL ano FerMaT (1654), As A THEORY OF GAMES oOF
CHANCE. SiNCE THEN, THE NOTION OF CHANCE HAS FOUND ITS WAY INTO ALMOST ALL
BRANCHES OF KNOWLEDGE. N PARTICULAR, THE DISCOVERY THAT PHYSICAL ‘'OBSERV-
ABLES,' EVEN THOSE WH)CH DESCR;BE THE BEYAVIOR OF ELEMENTARY PARTICLES, WERE

12 gy PERMISSiON FROM LoNTrROL SvsTems EnGINEERING By H. H. Goobe AND
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TO BE CONSIDERED AS SUBJECT TO LAWS OF CHANCE MADE AN INVESTIGATION OF THE
NOTION OF CHANCE BA5SIC TQ THE WHOLE PROBLEM OF RATIONAL INTERPRETATION OF
NATURE.

"A THEORY BECOMES MATHEMATICAL WHEN 1T SETS UP A MATHEMATICAL MODEL OF
THE PHENOMENA WJTH WHICH IT IS CONCERNED, THAT IS, WHEN, TO DESCRIBE THE
PHENOMENA, IT USES A COLLECTION OF WELL-DEFINED SYMBOLS AND OPERATIONS ON
THE SYMBOLS. AS THE NUMBER OF PHENOMENA, TOGETHER WITH THEIR KNOWN PROP=-
ERTIES, INCREASES; THE MATHEMATICAL MODEL EVOLVES FROM THE EARLY CRUDE
NOTIONS UPON WHICH OUR INTUITION WAS BUILT IN THE DIRECTION OF HIGHER GEN-
ERALITY AND ABSTRACTNESS.

IN THIS MANNER, THE INNER CONSISTENCY OF THE MODEL OFf RANDOM PHENOMENA
BECAME DOUBTFUL, AND THIS FORCED A REBUJILDING OF THE WHOLE STRUCTURE N THE
SECOND QUARTER OF THIS CENTURY, STARTING WITH A FORMULATION IN TERMS OF
AXIOMS AND DEFIRI!TIONS. THUS, THERE APPEARED A BRANCH OF PURE MATHEMATICS
PROBABILITY THEORY --=-CONCERNED WITH THE CONSTRUCTION AND INVESTIGATION PER
SE OF THE MATHEMATICAL MODEL OF RANDOMNESS."

ProFessor BARTLETT}h oF THE UNIVERSITY OF MANCHESTER STATES I[N HIS BOOK
INTRODUCTION TO STOCHASTIC PROCESSES: "IN THIS BOOK WE ARE GOING TO CONSIDER
A SUBJECT WHECH iN PARTICULAR APPLICATIONS HAS ARISEN SINCE THE BEGINNINGS
OF PROBABILITY THEORY, BUT THE SYSTEMATIC TREATMENT OF WHICH HAS ONLY
RECENTLY BEGUN TGO RECEIVE THE ATTENTION |IT DESERVES. WE MAY, ROUGHLY SPEAK=-
ING, THINK OF THIS SUBJECT AS THE 'DYNAMIC' PART OF STATISTICAL THEORY, CR
THE STAT|STICS OF '"CHANGE,' N CONTRAST W|TH THE 'STATIC' STATISTICAL PROB=-
LEMS WHICH HAVYE HITHERTC BEEN THE MORE SYSTEMATICALLY STUDIED. By A sTo-
CHASTIC PROCESS WE SHALL IN THE FIRST PLACE MEAN SOME POSSIBLE ACTUAL, £.G.
PHYSICAL, PROCESS [N THE REAL WORLD THAT HAS SOME RANDOM OR STOCHASTIC ELE~-
MENT INVOLVED iN !TS STRUCTURE. IT WILL BE CONVEMNIENT, HOWEVER, ALSO TO USE
THE SAME PHRASE FOR THE MATHEMATICAL REPRESENTATION AS WELL AS THE PHYSICAL
CONCEPT, JuST AS WiTH THE WORD 'PROBABILITY,' ESPECIALLY HERE WHERE WE SHALL
BE MAINLY {NTERESTED tN THE MATHEMAT!CAL THEQGRY IN ITS ROLE AS A THEORY Of
STATISTICAL PHENOMENA.

" ManY 0BVIOUS EXAMPLES OF SUCH PROCESSES ARE TO BE FOUND IN VARIOUS
BRANCHES OF SCIENCE AND TECHNOLOGY, FOR EXAMPLE, THE PHENOMENON OF BROWNI|AN
MOTION, THE GROWTH OF A BACTERIAL COLONY, OR THE FLUCTUATING NUMBERS OF
ELECTRONS AND PHOTONS iN A COSMIC-RAY SHOWER. IN MANY OF THESE EXAMPLES THE
STATISTICAL OR RANDOM VARIABLES UNDER S5TUDY, SUCH AS THE COORDINATES OF A
BrowN i AN PARTICLEy; ARE CHANGING WITH TIME, BUT CHANGE INVOLVING ANY OTHER
PARAMETER MAY ARISE; FOR EXAMPLE, A STOCHASTIC PROCESS INVOLVING SPACE PARA-
METERS AS WELL AS TIME IS THE 'VELOCITY FIELD' OF A TURBULENT FLUID . . . o

14
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"THE MATHEMATICAL THEORY WHICH |5 THE STARTING POINT OF THE THEORETICAL
DEVELOPMENTS 1S THE THEORY OF PROBABILITY, AS THi5 IS THE BASIS OF ALL STA-
TISTICAL THEORY. |IN VIEW OF THIS CENTRAL POSITION OF THE MATHEMAT[CAL THEORY
OF PROBABILITY, ITS ELEMENTS ARE SUMMARIZED I[N THE NEXT SECTION} BUT IN VIEW
OF THE MANY CONTROVERSIAL DISCUSSIONS OVER ITS INTERPRETATION , IT MAY BE AS
WELL TO STRESS AT ONCE THAT WE SHALL ALWAYS USE iT A5 A THEORY ABOUT STA-
TISTICAL PHENOMENA. THERE ARE MANY SITUATIONS WHERE OBSERVATIONS ON PARTICU=
LAR PHENOMENA CAN BE REPEATED UNDER SIMILAR CONDITIONS, BUT WHERE, HOWEVER
CLOSELY ONE ATTEMPTS TO CONTROL THE CONDITIONS UNDER WHICH THE OBSERVATIONS
ARE MADE, THERE ARE IRREGULAR OR- RANDOM VARIATIONS BETWEEN THE RESULTS OF
DIFFERENT TRIALS. NEVERTHELESS, A SURVEY OF ALL THE TRIALS OFTEN INDICATES
REGULARITIES WHICH STABILIZE AS THE NUMBER OF TRIALS IS INCREASED; SUCH
REGULARITIES ARE CALLED STATISTICAL PROPERTIES. (THE WORD 'TRIALS' IS OF
COURSE USED HERE IN A BROAD SENSE; THUS IN COIN-TOSSING EXPERIMENTS WE MAY
CONSIDER EITHER REPEATED TOSSING OF THE SAME COIN OR SIMULTANEOUS TOSSING
OF MANY SIMILAR COINS)."

THE CHALLENGING SCOPE OF THE PROBABILISTIC MODELS ARE PCRTRAYED BY ULaM
iN THE FOLLONING.ls HSOME OF THE GREAT MATHEMATICIANS OF THE EIGHTEENTH
CENTURY, IN PARTICULAR EULER, SUCCEEDED IN [INCORPORATING INTC THE OOMAIN OF
MATHEMATICAL ANALYS15 DESCRIPTIONS OF MANY NATURAL PHENOMENA. VoN NEUMANNTS
WORK ATTEMPTED TO CAST IN A SIMILAR ROLE THE MATHEMATICS STEMMING FROM SET
THEORY AND MODERN ALGEBRA. THIS 5 OF COURSE, NOWADAYS, A VASTLY MORE DIFFt-
CULT UNDERTAKING. TRE INFINITESIMAL CALCULUS AND THE SUBSEQUENT GROWTH OF
ANALYS|S5 THROUGH MOST OF THE NINETEENTH CENTURY LED TO HOPES OF NOT MERELY
CATALQGUING, BUT OF UNDERSTANDING THE CONTENTS OF THE PANDORA'S BOX OPENED BY
THE DISCOVERIES OF PHYSICAL SCIENCES. SUCH HOPES ARE NOW ILLUSORY, If ONLY
BECAUSE THE REAL NUMBER SYSTEM OF THE EUCLIDEAN SPACE CAN NO LONGER CLAIM,
ALGEBRAICALLY, OR EVEN ONLY TOPOLOGICALLY, TG BE THE UNIQUE OR EVEN THE BEST
MATHEMATICAL SUBSTRATUM FOR PHYSICAL THEORIES. THE PHYSICAL IDEAS OF THE
'19TH CENTURY, DOMINATED MATHEMATEICALLY BY DIFFERENTIAL AND INTEGRAL EQUAT[ONS
AND THE THEORY OF ANALYTIC FUNCTIONS, HAVE BECOME INADEQUATE. THE NEW QUANTUM
THEORY REQUIRES ON THE ANALYTIC SIDE A SET~THEORETICALLY MORE GENERAL POINT
OF VIEW, THE PRIMITIVE NOTIONS THEMSELVES INVCLYING PROBABILITY DISTRIBUTIONS
AND INFINITE~DIMENSIONAL FUNCTION SPACES. THE ALGEBRAICAL COUNTERPART TO
THIS INVOLVES A STUDY OF COMBINATORIAL AND ALGEBRAIC STRUCTURES MORE GENERAL
THAN THOSE PRESENTED BY REAL OR COMPLEX NUMBERS ALONE.

"ANOTHER MAJOR SOURCE FROM WHICH GENERAL MATHEMATICAL INVESTIGATIONS ARE
BEGINNING TO PEVELOP IS A NEW KIND OF COMBINATORI|IAL ANALYSIS STIMULATED BY
THE RECENT FUNDAMENTAL RESEARCHES IN THE BIOLOGICAL SCIENCES. HERE, THE LACK
OF GENERAL METHOD AT THE PRESENT TIME S EVEN MORE NOTICEABLE. THE PROBLEMS
ARE ESSENTIALLY NON=LINEAR, AND OF AN EXTREMELY COMPLEX COMBINATORIAL CHAR-
ACTER; 1T SEEMS THAT MANY YEARS OF EXPERIMENTATION AND HEURISTIC STUDIES WILL

15 By PERHISS]ON FROM JOHN voN NeuMann 1003-1957 ey S, Uram. COPYRIGHTED
195 AMERICAN MATHEMATICAL SocieTy VoL. 64, Nr 3, ParT 2, May 1958.

13



BE NECESSARY BEFORE ONE CAN HOPE TO ACHIEVE THE INSIGHT REQUIRED FOR DECISIVE
SYNTHESES. AN AWARENESS OF THIS IS WHAT PROMPTED VON NEUMANN TO DEVOTE SO
MUCH OF HIS WORK OF THE LAST TEN YEARS TO THE STUDY AND THE CONSTRUCTION OF
COMPUT ING MACHINES AND TO FORMULATE A PRELIMINARY OUTLINE FOR THE STUDY OF
AUTOMATA."

WIENER HAS THE FOLLOWING TO SAY WiTH REGARD TO THE ROLE OF STATISTICS
IN PHYS €8:10™ ~ , ., NEWTONIAN PHYSICS, WHICH HAD RULED FROM THE END OF THE
SEVENTEENTH CENTURY TO THE END OF THE NINETEENTH WITH SCARCELY AN OPPOSING
VOICE, DESCRIBED A UNIVERSE IN WHICH EVERYTHING HAPPENED PRECISELY ACCORDING
TO LAW, A COMPACT, TIGHTLY ORGANIZED UNIVERSE IN WHICH THE WHOLE FUTURE
DEPENDS STRICTLY UPON THE WHOLE PAST. SUCH A PICTURE CAN NEVER BE EITHER
FULLY JUSTIFIED OR FULLY REJECTED EXPERIMENTALLY AND BELONGS IN LARGE MEAS-
URE TO A CONCEPTION OF THE WORLD WHICH IS SUPPLEMENTARY TO EXPERIMENT BUT
IN SOME WAYS MORE UNIVERSAL THAN ANYTHING THAT CAN BE EXPERIMENTALLY VERI-
FIED. WE CAN NEVER TEST BY OUR IMPERFECT EXPERIMENTS WHETHER ONE SET OF
PHYSICAL LAWS OR ANOTHER CAN BE VERIFIED DOWN TO THE LAST DECIMAL. THE NEw-
TONIAN VIEW, HOWEVER, WAS COMPELLED TO STATE AND FORMULATE PHYSICS AS (F 1T
WERE, IN FACT, SUBJECT TO SUCH LAWS. THIS 15 NOW NO LONGER THE DOMINATING
ATTITUDE OF PHYSICS, AND THE MEN WHO CONTRIBUTED MOST TO 1TS DOWNFALL WERE
BoLzMARN IN GERMANY anD GIBBS IN THE UNITED STATES.

"THESE TWO PHYSICISTS UNDERTOOK A RADICAL APPLICATION OF AN EXCITING,
NEW IDEA. PERHAPS THE USE OF STATISTICS IN PHYSICS WHICH, IN LARGE MEASURE,
THEY INTRODUCED WAS NOT COMPLETELY NEW, FOR MAXWELL 'AND OTHERS HAD CONSIDERED
WORLDS OF VERY LARGE NUMBERS OF PARTICLES WHICH NECESSARILY HAD TO BE TREATED
STATISTICALLY. BuUT wHAT BoLZMANN AND GIBBS DID WAS TO INTRODUCE STATISTICS
INTO PHYSICS EN A MUCH MORE THOROUGH GOING WAY, SO THAT THE STATISTICAL
APPROACH WAS VALID NOT MERELY FOR SYSTEMS OF ENORMOUS COMPLEXITY, BUT EVEN
FOR SYSTEMS AS SIMPLE AS THE SINGLE PARTICLE IN.A FIELD OF FORCE.

" . . . THERE WAS, ACTUALLY, AN IMPORTANT STATISTICAL RESERVATION
IMPLICIT IN NEWTON'S WORK, THOUGH THE EIGHTEENTH CENTURY, WHICH LIVED BY
NEWTON, IGNORED 1T, NO PHYSICAL MEASUREMENTS ARE EVER PRECISE; AND WHAT WE
HAVE TO SAY ABOUT A MACHINE OR OTHER DYNAMIC SYSTEM REALLY CONCERNS NOT WHAT
WE MUST EXPECT WHEN THE INITIAL POSITIONS AND MOMENTS ARE GIVEN WITH PERFECT
ACCURACY (WH1CH NEVER OCCURS), BUT WHAT WE ARE TO EXPECT WHEN THEY ARE GIVEN
WITH ATTAINABLE ACCURACY. THIS MERELY MEANS THAT WE KNOW, NOT THE COMPLETE
iNITIAL CONDiTiONS, BUT SOMETHiNG ABOUT THEIR DISTRIBUTION, THE FUNCTIONAL
PART OF PHYS!CS, IN OTHER WORDS, CANNOT E£SCAPE CONSIDERING UNCERTAINTY AND
THE CONTiNGENCY OF EVENTS. [T WAS THE MERIT OF GIBBS TO SHOW FOR THE FIiRST
TIME A CLEAN=CUT SCIENTIFIC METHOD FOR TAKING THIS CONTEINGENCY INTO CONSID-
ERATION . . . &

16 By PErRMisstion FROM THE HumanN Use or Human Beings By N. WIENER.
COPYRIGHTED . HousuTon MiFFLIN Co.
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"GIBBS HAD TO WORK WITH THEORIES OF MEASURE AND PROBABILITY WHICH WERE
ALREADY AT LEAST TWENTY~FIVE YEARS OLD AND WERE GROSSLY INADEQUATE TO H1IS
NEEDS. AT THE SAME TIME, HOWEVER, BoreL AND LEBEsSQuUE IN PARIS WERE DEVISING
THE THEORY OF INTEGRATION WHICH WAS TO PROVE OPPOSITE TO THE GIBBSIAN IDEA.
BoREL WAS A MATHEMATICIAN WHO HAD ALREADY MADE HIS REPUTATION IN THE THEORY
OF PROBABILITY AND HAD AN EXCELLENT PHYSICAL SENSE. HE DID WORK LEADING TO
THIS THEORY OF MEASURE, BUT HE DID NOT REACH THE STAGE IN WHICH HE COULD
CLOSE IT INTO A COMPLETE THEORY. THIS WAS DONE BY HIS PUPIL LEBESQUE, WHO
WAS A VERY DIFFERENT SORT OF PERSON. HE HAD NEITHER THE SENSE OF PHYSICS
NOR AN INTEREST IN IT. NONETHELESS LEBESQUE SOLVED THE PROBLEM PUT 8Y BoreL,
BUT HE REGARDED THE SOLUTION OF THIS PROBLEM AS MORE THAN A TooL FOR Fourler
S5ERIES AND OTHER BRANCHES OF PURE MATHEMATICS5. A QUARREL DEVELOPED BETWEEN
THE TWO MEN WHEN THEY BOTH BECAME CANDIDATES FOR ADMISSION TO THE FRENCH
ACADEMY OF SCIENCES, AND ONLY AFTER A GREAT DEAL OF MUTUAL DENIGRATION, DID
THEY BOTH RECEIVE THIS HONOR. BOREL, HOWEVER, CONTINUED TO MAINTAIN THE
IMPORTANCE OF LEBESQUE'S WORK AND HIS OWN AS A PHYSICAL ToOL; BUT | BELIEVE
THAT | MYSELF, IN 1920, WAS THE FIRST PERSON TO APPLY THE LEBESQUE INTEGRAL
TO A SPECIFIC PHYS|CAL PROBLEM - THAT OF THE BROWNIAN MOTION.

"TH1S OCCURRED LONG AFTER GIBB'S DEATH, AND HIS WORK REMAINED FOR TwO
DECADES ONE OF THOSE MYSTERIES OF SCIENCE WHICH WORK EVEN THOUGH IT SEEMS
THAT THEY OUGHT NOT TO WORK. MANY MEN HAVE HAD INTUITIONS WELL AHEAD OF
THEIR TIME; AND THIS 18 NOT LEAST TRUE IN MATHEMATICAL PHYSICS. GiBB's
INTRODUCTEION OF PROBABILITY INTO PHYSICS OCCURRED WELL BEFORE THERE WAS AN
ADEQUATE THEORY OF THE SORT OF PROBABILITY HE NEEDED. BUT FOR ALL THESE
GAPS 1T 15, | AM coNVINCED, GIBBS RATHER THAN EINSTEIN OR HEISENBERG OR
PLANCK TO WHOM WE MUST ATTRIBUTE THE FIRST GREAT REVOLUTION OF TWENTIETH
CENTURY PHYSI1CS.

"THI5 REVOLUTION HAS HAD THE EFFECT THAT PHYSICS NOW NO LONGER CLAIMS
TO DEAL WITH WHAT WILL ALWAYS HAPPEN, BUT RATHER WITH WHAT WILiL HAPPEN
WITH AN OVERWHELMING PROBABILITY. AT THE BEGINNING IN GIBB'S OWN WORK THIS
CONTINGENT ATT{TUDE WAS SUPERIMPOSED ON A NEWTONIAN BASE IN WHICH THE ELE~
MENTS WHOSE PROBABILITY WAS TO BE DISCUSSED WERE SYSTEMS OBEYING ALL COF THE
NEWTONIAN LawWwS., GiBB'S THEORY WAS ESSENTIALLY NEW, BUT THE PERMUTATIONS
WITH WHICH T WAS COMPATIBLE WERE THE SAME AS THOSE CONTEMPLATED BY NEWTON.
WHAT HAS HAPPENED TO PHYSICS SINCE 1S THAT THE RIGID NEWTONIAN BASIS HAS
GEEN DISCARDED OR MODIFIED, AND THE GIBBSIAN CONTINGENCY NOW STANDS N ITS
COMPLETE MNAKEDMNESS AS THE FULL BASIS OF PHYSICS. [T 15 TRUE THAT THE BOOKS
ARE NOT YET QUITE CLOSED ON THIS ISS5UE AND THAT EINSTEIN ANDy, IN SOME OF HIS
PHASES, DEBROGLIE, STILL CONTEND THAT A RIGID DETERMINISTIC WORLD {5 MORE
ACCEPTABLE THAN A CONTINGENT CONE; BUT THESE GREAT SCIENTISTS ARE FIGHTING
A REAR-GUARD ACTION AGAINST THE OVYERWHELMING FORCE OF A YOUNGER GENERATION.

a

« » » THE IMPORTANT THING IS THAT IN EINSTEIN'S WORK, LIGHT AND
MATTER ARE ON AN EQUAL BASI1S, AS THEY HAVE BEEN IN THE WRITINGS BEFORE Ngw-
TON; WITHOUT THE NEWTONJIAN SUBORD!NATION OF EVERYTHING ELSE TO MATTER AND
MECHANICS + 4 « o
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", . . IN EXPLAINING HIS VIEWS, EINSTEIN MAKES ABUNDANT USE OF THE

OBSERVER WHO MAY BE AT REST OR MAY BE MOVING, [N HIS THEORY OF RELATIVITY
IT 1S {MPOSSIBLE TO INTRODUCE THE OBSERVER WITHOUT ALSO INTRODUCING THE
IDEA OF MESSAGE, AND WITHOUT, IN FACT, RETURNING THE EMPHASIS OF PHYSICS
TO A QUASI-LEIBNITIZIAN STATE, WHOSE TENDENCY 15 ONCE AGAIN OPTICAL.
EINSTEIN'S THEORY OF RELATIVITY AND GIBB'S STATISTICAL MECHANICS ARE IN
SHARP CONTRAST, IN THAT EINSTEIN, LIKE NEWTON, 15 STILL TALKING PRIMARILY

IN TERMS OF AN ABSOLUTELY RIGID DYNAMICS NOT INTRODUCING THE |IDEA OF PROB=
"
ABILITY.

LURIE HAS THE FOLLOWING TO SAY REGARDING THE ROLE OF THE STATISTICiAN
AND sclENTISTS:TT " . . . THe STATISTICiAN, IF HE 1S REALLY TO ASSIST THE
SCIENTIST, MUST PERFORM A NECESSARY, BUT IRRITATINGLY ANNOYING TASK} HE MUST
ASK THE SCIiENTIST !MPERTINENT QUESTIONS. INDEED, THE QUESTIONS, !F BLUNTLY
ASKED, MAY APPEAR TG BE NOT ONLY IMPERTINENT BUT ALMOST INDECENTLY PRYING ==
BECAUSE THEY DEAL WITH THE FOUNDATIONS OF THE SCIENTIST'S THINKING. BY THEsE
QUESTIONS UNSUSPECTED WEAKRKNESSES IN THE FOUNDATIONS MAY BE BROUGHT TO LIGHT,
AND THE EXPOSURE OF WEAKNESSES IN ONE'S THINKING 1S A RATHER UNPLEASANT
QCCURRENCE .

"THE STATISTIf:an WiLL, THEN, IF HE I8 WISE IN THE WAYS OF HUMAN BEINGS
AS WELL AS LEARNED IN STATISTICS, ASK THESE QUESTIONS DIPLOMATICALLY OR EVEN
NOT ASK THEM AS QUESTIONS AT ALL. HE MAY WELL GUIDE THE DISCUSSION WITH THE
SCIENTIST IN SUCH A WAY THAT THE ANSWERS TO THE QUESTIONS WiLL BE FORTHCOMING
WITHOUT THE QUESTIONS HAVING BEEN EVEN EXPLIC|TLY ASKED.

"AND IF HAPPILY THE SCIENTIFIC AND STATISTICAL DISCIPLINES RESIDE WITHIN
ONE MiND, AND IT IS THE SCIENTIST'S STATISTICAL -CONSCIENCE WHICH ASKS HIM
THESE QUESTIONS, INSTEAD OF [MPERTINENT QUESTIONING THERE IS VALID SCIENTIFIC
SQUL-SEARCHING.

"REGARDLESS, THEN, OF WHETHER THESE QUESTIONS ARISE INSIDE OR OUTSIDE
THE SCIENTIST'S OWN MIND, WHAT ARE THEY? THESE:

1. WiITH RESPECT TO THE EXPERIMENT YOU ARE PERFORMING, JUST WHAT ARE
YOUR I10EASY

2. WiTH RESPECT TO THE SCIENT!FIC AREA TO WHICH THESE !DEAS REFER,
JUST WHAT ARE THEY ABOUT?

39 How SURE DO YOU WANT TO BE OF THE CORRECTNESS OF THESE IDEAS?

1 By PERMISSION FROM THE IMPERTINENT QUESTIONER BY W. Lurie.
CopyriGHTED 1950, AMERICAN SCIENTIST VoL. 86, Nr 1, Marck 1958.
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"IN ORDER TO UNDERSTAND THE STATISTICIAN'S REASONS FOR ASKING THESE
QUESTIONS, LET US FIRST SEE HOW THE SCIENTIST'S AZTiVITIES LOOK TO THE
STATISTICIAN,

_ "FROM THE STATISTICIAN'S POINT OF VIEW, WHAT THE SCIENTIST DOES, i53
PERFORM EXPERIMENTS AND/OR MAKES OBSERVATIONS TO OBTAIN DATA RELATING TO
AN IDEA HE HAS ABOUT THE ORGANIZATION OF THAT PORTION OF THE WORLD HE iS
INTERESTED IN, SO THAT HE CAN DECIDE WHETHER HIS IDEA WAS CORRECT OR NOT.

"FOR EACH OF THESE UNDERLINED ASPECTS OF THE SCIENTIST'S ACTIVITY,
THERE IS A CORRESPONDING QUESTION.

AN [DEA He Has
" . . . THE IMPERTINENT QUESTIONER MUST TAKE THE RISK OF APPEARING TO
IMPLY THAT THE SCIENTIST (S NOT THINKING CLEARLY. AND, OF COURSE, EVEN AN
IMPLICATION TO THIS EFFECT IS NOT CALCULATED TO ENDEAR THE IMPLIER TO THE
HEART OF THE IMPLYEE. BUT IT IS EXACTLY THIS IMPLICATION THAT, PERHAPS
INNOCENTLY, /5 ASSOCIATED WITH THE QUESTION, 'JUST WHAT ARE YOUR IDEAS.'

" WHY DOES THE STATISTICIAN ASK THIS IMPERTINENT QUESTION? BECAUSE IT
IS A PRECONDITION FOR THE STATISTICIAN'S BEING ABLE TO HELP THE SCIENTIST
ACCOMPLISH HIS OBJECTIVE. A HAZILY FORMULATED IDEA NOT ONLY CAN BE DI§=
CUSSED, AT BEST, WITH DIFFICULTY, BUT FURTHER, IT 1S PRACTICALLY IMPOSSIBLE
TO TEST /TS CORRECTNESS. THEREFORE, THE STATISTICIAN HAS A RULE, HIS NAME
FOR WHICH i8: ExPLICIT HYPOTHESIZATION. THIS RULE EXPRESSES THE REQUIRE=-
MENT THAT THE IDEA, WHOSE CORRECTNESS IS TO BE DETERMINED BY THE EXPERIMENT,
" SHOULD BE STATED IN AS CLEAR, DETAILED AND EXPLICIT FORM AS POSSIBLE, PREF-
ERABLY BEFORE THE EXPERIMENT IS CONDUCTED. THIS IDEA CAN RELATE EITHER TO
THE INFLUENCE OF ONE FACTOR OR TO THE INFLUENCE OF SEVERAL FACTORS, OR TO
THE NUMERICAL CHARACTERIZATION OF A PROPERTY (OR PROPERTIES) OF WHATEVER IS
BEING EXPERIMENTED ON. [N THE EARLY S5TAGES OF AN INVESTIGATION, WHERE WHAT
ARE BEING SOUGHT ARE THE. INFLUENTIAL FACTORS {l.E. THOSE WHICH, WHEN THEY
ARE AT VARYING LEVELS, GIVE RISE TO SUFFICIENTLY VARIED RESULTS) THE IDEA
(OR HYPOTHESIS) NEED NOT BE SPECIFIC, BUT IT MUST BE EXPLICIT. THE HYPOTH~
ESI5 CAN BE BROAD, BUT IT MUST BE EXPLICITLY BROAD: = THAT IS, EVEN THOUGH
IT IS NOT A HYPOTHES!S ABOUT DETAILS, ITS BOUNDARY MUST BE SHARPLY DELIN=
EATED o & « &

~ "Now ASSUMING THAT THE HYPOTHESIS HAS BEEN SUFFICIENTLY EXPLICITLY
FORMULATED, THE SCIENTIST AND STATISTICIAN CAN TOGETHER REVIEW THE PLAN
{or DESIGNS OF THE EXPERIMENT, AND ASSURE THEMSELVES THAT SUCH DATA WILL
BE OBTAINED AS WiLL BE SUFFICIENT TO DETERMINE THE CORRECTNESS [ OR NON=
CORRECTNESS) OF THE SCIENTIST'S IDEA.

THAT PorTioN OF THE WorLo HeE |5 INTERESTED IN

"o « ‘AGAIN, THE IMPERTIENT QUESTIONER MUST BE CAREFUL IN ASKING:

"JUST WHAT ARE YOUR IDEAS ABOUT?' EVEN THOYGH ONE MAY ADMIT THAT HIS IDEAS

17



ARE NOT AS CLEARLY AND EXPLICITLY FORMULATED AS HE WOULD LIKE, THE QUESTION
"JUST WHAT ARE YOUR 'IDEAS ABOUT?' CARRIES WITH IT, TO THE PERSON BEING ASKED,
THE IMPLICATION THAT HE ISN'T CLEAR ABOUT THE SUBJECT=-MATTER OF HIS IDEAS,
SURELY NOT & FLATTERING IMPLICATION. THE STATISTICIAN HAS A REASON FOR HIS
IMPLIED ASPERSION ON THE BA51S OF THE SCIENTIST'S SELF~ESTEEM. THE STATiS-

"TICIAN'S REASON CAN BE STATED TO THE SCIENTIST THUS '|T'S FOR YOUR OWN GOOD.
IF | AM TO HELP YOU DECIDE, ON THE BASI|S OF THE EXPERIMENTAL FACTS, WHETHER
YOUR IDEAS ARE CORRECT OR NOT, | HAVE TO KNOW, AS EXPLICITLY AS POSSIBLE,

NOT ONLY WHAT YOUR IDEAS ARE, BUT WHAT THEY ARE ABOUT. My NAME FOR THIS
REQUIREMENTS 15: MoDEL FORMULATION.' TECHMICALLY, MopelL FORMULATION ESTAB-
LISHES THE REQUIREMENT THAT A CLEAR DIFFERENTIATION BE MADE AS TO WHETHER
THE SCIENTIST'S IDEAS ARE INTENDED TO BE APPLICABLE ONLY TO THE CONDITIONS
OF THE EXPERIMENT (THE NARROWER RANGE OF APPLICATION) OR TO CONDITIONS (1!.E.,
LEVELS OF THE FACTORS) OTHER THAN THOSE SPECIFIC ONES UNDER WHICH THE EXPERI!-
MENT IS BEING CONDUCTED (THE BROADER RANGE OF APFPLICATION). WHY THE NECES~-
SITY FOR THIS DIFFERENTIATION? BECAUSE, WHEN THE EXPERIMENTAL DATA HAVE
BEEN OBTAINED, THE ANALYSIS OF THE DATA IS CARRIED ON IN DIFFERENT WAYS,
DEPENDING ON WHETHER THE HYPOTHESES ARE INTENDED TO HAVE THE BROADER OR
NARROWER RANGE OF APPLICATION.

WuETHER His lpea Was CorrecT Or Not

" . . . THE STATISTICIAN'S THIRD QUESTION -~ 'HOW SURE DO YOU WANT TO
BE OF THE CORRECTNESS OF YOUR IDEAST' 1S THE LEAST IMPERTINENT OF THE THREE.
TH1S QUEST!ION, UNLIKE THE OTHER TWO, DOES NOT PROBE THE FOUNDATIONS OF THE
SCIENTIST'S THINKING, BUT RATHER REQUESTS HIM TO QUANTIFY A PREVIOUSLY
UNQUANTIFIED ASPECT OF IT. (N FACT, THE REQUEST IS IN ACCORDANCE WITH THE
SCIENTIST'S OWN PREDILECTION FOR QUANTITATIVE DATA). THIS ASPECT 1S THAT
DEALING WITH LEVELS OF ASSURANCE, FOR WHICH ORDINARY LANGUAGE SUPPLIES US
WITH QUAL!TATIVELY DESCRIPTIVE TERMS (SOMEWHAT SURE, RATHER SURE, QUIYE SURE,
EXTREMELY SURE). BUT THESE TERMS ARE NOT SUFFICIENTLY EXPLICIT FOR SCIEN-
TIFIC USE. THEREFORE, THE STATISTIC!AN ASKS THE SCIENTIST TO DECIDE UPON
AND EXPRESS HIS DESIRED LEVEL OF ASSURANCE !N QUANTITATIVE TERMS, SO THAT
IT CAN BE DETERMINED, BY ANALYS!S OF THE QUANTITATIVE DATA, WHETHER THE
DESIRED LEVEL OF ASSURANCE OF THE CONCLUSIONS HAS BEEN ACHIEVED. THE STATIS-
TICIAN'S NAME FOR THE CHOICE AND QUANTITATIVE EXPRESSION OF THE DESIRED LEVEL
OF ASSURANCE 1s: SiGMIFICANCE LEVEL SELECTION. AND HOW DOES THE STATIS-
TICIAN HELP THE SCIENTIST CHOOSE THE DESIRED LEVEL OF ASSURANCE? By BRINGING
TO THE FOREFRONT OF THE SCIENT!ST'S CONSCIOUSNESS HI3 ALREADY UNCONSCIQUS
AWARENESS OF THE INHERENT VARIABILITY OF EVENTS (1.E., THAT, BECAUSE OF CHANCE
ALONE, NO REPET!TION OF AN EXPERIMENT WILL GIVE EXACTLY THE SAME RESULTS )}
BY HELPING THE SCIENT!ST DEC!DE WHAT ASSURANCE 15 DESIRED THAT THE HYPOTHESIS
HAS NOT BEEN 'CONFIRMED' JUST BY THE OPERATION OF CHANCE ALONE; AND BY FUR-
NISHING THE MATHEMATICAL TOOLS TO DECIDE, ON THE BASIS OFf THE EXPERIMENTAL
DATA, WHETHER THE DESIRED LEVEL OF ASSURANCE HAS BEEN ATTAINED,

" . . . WHEN THE SCIENTIST MAS SELECTED THE CHANCE HE IS5 WILLING TO
TAKE OF BEiNG WRONG [OR WHAT 15 EQUIVALENT, HOW SURE HE WANTS TO BE THAT HE
'S CORRECT) IN Hi1S CONCLUSIONS, THE STATISTICIAN CAN ANALYZE THE DATA AND
TELL THE SCIENTIST WHAT CONCLUSIONS HE CAN VALIDLY DRAW {1.E. WHAT DECISI1ONS
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HE CAN MAKE ABOUT THE CORRECTNESS OF H!S lDEAS).

EPILOGUE
", . . ONE FINAL WORD. IT IS THE STATISTICIAN'S RESPONSIBILITY TO ASK
THESE QUESTIONS, NOT TO ANSWER THEM. |T 15 THE SCIENTIST'S RESPONSIBILITY
TO DECIDE EXACTLY WHAT HIS HYPOTHESES ARE, WHAT THESE HYPOTHESES ARE ABOUT,
AND HOW SURE HE WANTS TO BE OF THEIR CORRECTNESS.

"THE STATISTICIAN, IN ASKING HIS IMPERTINENT QUESTIONS, IS5 JUST EXPLI-
CITLY BRINGING TO THE SCIENTIST'S ATTENTION, RESPONSIBILITIES THAT THE
SCIENTIST MAY NOT HAYE BEEN AWARE THAT HE HAD., AND THE MORE THE SCIENTIST
BECOMES AWARE OF H|S RESPONSIBILITIES, AND TAKES THEM INTO ACCOUNT IN HIS
WORK, SO MUCH MORE ACCURATE AND VALID WiLL HIS CONCLUSIONS BE, AND SO MUCH
MORE PROPERLY RELATED TO THE REALITY WITH WHICH HE DEALS,"

Proressor NOYES OF THE UNIVERSITY OF CALIFORNEIA HAS THE FOLLOWING TO
SAY WITH RESPECT TO MATHEMATICAL MODELS OF THEORETICAL PHYS1cS:10 “"Thys |
HAVE A STRONG FEELING THAT FROM NOW ON THE MATHEMATICAL MODELS OF THEORETICAL
PHYSICS ARE UNLIXZLY TO BE UNIQUE, AND THE ADOPTION OF ONE RATHER THAN
ANOTHER WILL COME TO BE BASED MORE ON AESTHETIC CONSIDERATIONS THAN ON
EXPERIMENTAL CRITERIA. ONCE TMIS SITUATION ACTUALLY EXISTS {RATHER THAN
POTENTIALLY AS 1S TRUE AT PRESENT) IT WOULD APPEAR TO ME OBVIOUS THAT THE
SUCCESS OF PHYSICS WOULD HAVE NOTHING TO DO WITH THE EXISTENCE OF A HYPO=-
THETICAL 'REAL' WORLD.

"BUT THE DEMONSTRATION OF THE NON=UNIQUENESS OF SUCCESSFUL PHYSICAL
THEQRIES HAS YET TO BE CARRIED THROUGH IN A NON=TRIVIAL CASE (IT 15 CLEARLY
ALWAYS POSSIBLE TO MODIFY AN EXISTING THEQRY BY ADDING STRUCTURES WHICH HAVE
A DIFFERENT INTUITIVE PHYSICAL INTERPRETATION, BUT WHICH ARE ADDED IN SUCH
A WAY A5 TO HAVE NO OBSERVATIONAL CONSEQUENCES). | THEREFORE WILL PRESENT
ANCTHER ARGUMENT, DRAWN FROM THE MATHEMATICAL BASIS OF PHYSICAL THEORY, WHICH
LEADS TO THE SAME CONLCUSION. UP TO THIS POINT | HAVE SPOKEN OF THE MATHE=
MATICAL CONCLUSIONS OF QUR THECORY AS IF THEY WERE UNIQUE, UNAMBIGUOUS, AND
FLOWING ANALYTICALLY FROM OUR PREMISES, ALTHOUGH ] HAD TO DO SOME FAST TALK=
ING WHEN IT CAME TO THE REMOVAL OF INFINITIES FROM OUR THEORY. BUT, ALTHOUGH
THERE ARE THREE DISTINCT SCHOOLS OF THOUGHT ABOUT THE FOUNDATIONS OF MATHE-
MATICS, | BELIEVE THEY WOULD UNITE IN DENYING THAT THIS IS TRUE.

"THE INTUITIONISTS HAVE HELD FOR A LONG TIME THAT A LARGE PORTION OF
MODERN MATHEMATICS |8 SHOCKINGLY DEFICIENT IN THE TYPE OF RIGOR THEY REQUIRE
A MATHEMATICAL THEORY TO EXHIBIT, AND THEIR BAN WOULD CERTAINLY FALL ON
ALMOST EVERY MATHEMATICAL INGREDIENT OF THE THEORIES | HAVE BEEN DISCUSSING.,
FROM THEIR POINT OF VIEW, FEW OF THE ABOVE CONCLUS|ONS HAVE ANY MATHEMATI|CAL
JUSTIFICATION WHATSOEVER. THE MATHEMATICAL LOGICIANS HOLD THAT MATHEMATICS

18

By PERMISSioN FROM THE PHYsicAL DescrIPTiON OF ELEMENTARY PARTICLES
BY P. H., Noves. CoPYRIGHTED 1957. THE AMERICAN SCIENTIST, VoL. 45,
Nr 5, DEcemeer 1957,
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1S A BRANCH OF LOGIC. BUT LOGIC IS BY NO MEANS UNIQUE, AS THE CREAT!ON OF
MULTI=VALUED LOGILCS HAS SHOWN. CONSEQUENTLY, FROM THIS POINT OF VIEW, EACH
LOGIC GENERATES ITS5 OWN MATHEMATICS, AND THE MATHEMATICAL STRUCTURE WE HAVE
BEEN USING COULD PRESUMABLY BE REPLACED BY ONE BASED ON A DIFFERENT LOGIC
AND LEADING TO A DIFFERENT PHYSICAL PICTURE OF THE UNDERLYING STRUCTURE.
FINALLY, THE FORMALIST GOEDEL HAS PROVED THAT ANY MATHEMATICAL STRUCTURE
RICH ENOUGH TO GENERATE THE NATURAL NUMBERS (HHICH IS CERTAINLY TRUE OF THE
MATHEMATICS USED 1IN PHYS]CS) CONTAINS UNDECIDABLE PROPOSITIONS, WHICH CAN
NEITHER BE PROVED TRUE NOR FALSE WITHIN THE SYSTEM. CONSEQUENTLY MATHE=-
MAT i CAL PHYSICS MUST ALSC CONTAIN UNDECIDABLE PROPOSITIONS ABOUT THE PHYSICAL
STRUCTURES IT DESCRIBES. THEREFORE, FROM THESE THREE BASIC POINTS OFf VIEW,
A MATHEMAT |CAL DESCRIPTION OF A PHYSICAL SYSTEM MUST CONTAIN ELEMENTS WHICH
EVEN MATHEMATICALLY SFEAKING ARE ARBITRARY, OR AMBIGUOUS OR UNDECIDABLE.

"forR ME, AT LEAST, THE CONCLUSION 15 INESCAPABLE THAT THE STRUCTURE OF
MATHEMAT I CAL PHYSICS CAN TELL US LITERALLY NOTHING ABOUT A HYPOTHETICAL
'REAL' WORLD., [N ONE SENSE ONLY CAN THE STRUCTURE BE SAID TO BE UNIQUE,
THAT (S, IT MUST GIVE AN UNAMBIGUOUS DESCRIPTION OF OUR IMMEDJATELY G&)VEN
SENSE [MPRESSiONS, AND HOWEVER FAR WE GO UP THE ABSTRACTION LADDER FROM THIS
BASIS, OUR THEORY MUST ALLOW US TO RETRACE OUR STEPS AND REPRODUCE THE
STRUCTURE OF THESE EXPERIENCES, IF IT {5 TO BE CONSIDERED SUCCESSFUL. Burt
SINCE, MATHEMATICALLY SPEAKING, OUR CONCLUSIONS DO NOT FOLLOW ANALYTICALLY
FROM OUR PREMISES, |T SEEMS TO ME OBVIQUS THAT THE RESULTING ABSTRACT STRUC-
TURE CAN NEVER BE UNIQUE. THIS FACT ALONE SEEMS SUFFICIENT GUARANTEE THAT
THE APPROACH ViA MATHEMATICAL PHYSICS CAN NEVER DO MORE THAN DESCRIBE THE
IMMEDIATELY GiVEN STRUCTURE OF EXPERIENCE IN TERMS OF SYMBOLS WHOSE SELEC-
TION 1S ESSENTIALLY ARBITRARY, AND WHICH HAVE NO ULTIMATE SIGNIF ICANCE IN
THEMSELVES, HOWEVER SUCCESSFUL THE PHYSICAL THEORY THEY DREPICT.

"FiNALLY | WOULD JUST LIKE TO MENTION AGAIN THE METHODOLOG!CAL POINT
WITH WHiCH WE STARTED. | HOPE AS A MIN!MUM ACCOMPLISHMENT OF THIS PAPER TO
HAVE CONVEYED THE JIMPRESSION THAT IN AT LEAST ONE BRANCH OF PHYSICS MATHE=-
MATICAL STRUCTURE HAS REPLACED '"INFERRED ENTITIES' AS A FRUITFUL WORKING
TOOL OF THE PHYs!CcisT."

SIMULATION

THE ENGINEERING CAPABIL|TY OF MATHEMATICALLY DESCRIBING INCREASINGLY
COMPLEX !NTEGRATED WEAPON SYSTEMS iS CONT!INUALLY PYRAMIDING. THE ELECTRONMNIC
COMPUTERS WHICH ARE BEING DESiGNED TO MANDLE THESE PROBLEMS CONTINUES TO LAG
BY ONE OR TWO ORDERS OF MAGN:TUDE BEHIND, FOR EXAMPLE, A DEGADE AG0, THE
TYPICAL COMPUTER FACIL!*TY COULD HANPLE AUTOPILOT STUDIES WITH AN EXTREMELY
SIMPLIFIED A{RFRAME. THE PRESENT TYPICAL COMPUTER FACILITY 15 APPROACHING
THE CAPACITY TO SIMULTANEOUSLY SIMULATE THE GUIDANCE, AUTOPILOT AND SIX DEGREE
OF FREEDOM AIRFRAME COMBINATION (FLAT NONROTATING EARTH). TOMORROWS TYPICAL
COMPUTING FACILITY WILL HAVE THE CAPABILITY TO INCLUDE W!TH THE AIRFRAME,
AUTOPILOT AND GUIDANCE SUCH THINGS AS AIRFRAME FLEXURE, MOTOR INTERIOR BAL-
LISTICS, MISSILE LAUNCH CONTROL LOGIC, MULTIPLE TARGETS, COUNTERMEASURES,
ETC., OVER A ROTATING SPHERO!DAL EARTH.
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As BAUER POINTS OUT, THE SEPARATE EFFECTS QF ANY ONE OF THE ABOYE AREAS
CAN BE STUDIED ADEQUATELY ON SMALL SIMULATORS; HOWEVER THE COMBINED EFFECTS
AND THE MUTUAL INTERACTIONS OF THESE PHENOMENA CAN BE ANALYZED ONLY ON A
LARGE SIMULATOR.

IRRESPECTIVE OF THE VARIOUS CURRENT OPINIONS PRO AND CON ON LARGE SCALE
SIMULATIONS, THE USERS OF SIMULATION FACILITIES HAVE A TENDRENCY TO |NCLUDE
MORE AND MORE OF THE COMPLICATIONS {N THE FORMULATION OF THE COMPLETE PROB~-
LEM. '

SINCE THERE ARE MANY {MPORTANT CLASSES OF PROBLEMS WHICH CANNOT EVEN
BE STATED MATHEMATICALLY, ONE MUST RESORT ALSC TO PHYSICAL SIMULATION. WHEN
ONE CONSIDERS THE DISTINCTION BETWEEN COMPUTING, SIMULATION, ANALOG, DIGITAL,
ETC., SHARP LINES OF DEMARCATION ARE NOT REALISTIC; EVEN THOUGH SOME PEQPLE
ARGUE AS THOUGH THEY ARE. RATHER THAN BEING CONCERNED ABOUT DEFINITIONS AN
ATTEMPT WILL BE MADE TO POINT QUT THE MOST IMPORTANT ASPECT OF SYSTEM 5{MU-
LATION.,

CONSIDER A WEAPON SYSTEM COMPOSED OF BOTH DIGITAL AND ANALOG DEVICES
AS SHOWN IN FtGe. 1-1. A DISTINCTION BETWEEN A PHYSICAL SYSTEM AND A MATHE~-
MATICAL SYSTEM (VERY LOQSELY USED) IS MADE. THUS, THE MATHEMATICAL MODEL
OF THE PHYSICAL SYSTEM MAY BE WRITTEN IN TERMS OF FUNCTIONS OF CONTINUOUS
VARIABLES QR [N TERMS OF FUNCTIONS OF DISCRETE VARJABLES. ONCE THE MATHE=-
MATICAL SYSTEM OF EQUATIONS 15 MECHANIZED ON A GOMPUTER, ONE HAS BUILT A
PHYSICAL SYSTEM MODEL Of THE ORIGINAL WEAFON SYSTEM. THE MODEL PHYSICAL
SYSTEM IN MOST CASES 18 AN ELECVRONIC MODEL OR ELECTRO-MECHANICAL DEPENDING
ON THE TYPES OF COMPUTING ELEMENTS ONE I5 USING, THUS A DIGITAL COMPUTER
MODEL OF THE WEAPON SYSTEM DIGITAL DEVICES MAY BE SAID TO BE THE "anALog"
OF THAT PORTION OF THE WEAPON SYSTEM.

THE GIST OF THIS GENERAL DISCUSSION 1S: LARGE WEAPON SYSTEM S IMULA-
TION5S ON GENERAL PURPOSE COMPUTERS CAN MOST EFFECTIVELY 8E ACHIEVED BY A
TEAM HAVING KNOWLEDGE OF THE PHYSICAL SYSTEM AS WELL AS KNOWLEDGE OF THE
COMPUTER IN GENERAL. FURTHERMORE, THE OPERATIONS OF THE SIMULATION COMPUTERS
MUST BE APPROACHED WITH BUILT IN SUBSYSTEM CHECKS ON THE PHYS|CAL SYSTEM .
BEHAVIOR AS WELL AS AN UNDERSTANDING OF THE "BLACK-BOX" COMPUTING ELEMENTS.

VJapa 19 STATES THAT, "IN MOST APPLICATIONS OF LINEAR PROGRAMMING OR
GAME THEQRY THAT THE COMPUTATIONS CALLED FOR ARE SO EXTENSIVE THAT 1T WOULD
SEEM IMPOSSIBLE TO CARRY THEM OUT IN THE LIFETIME OF THOSE WHO ARE [INTERESTED
IN THE ANSWER AND THAT COMPUT{ING METHODS AND THE ADVENT OF AUTOMATIC COMPUTERS
HAS MADE [T POSS|BLE TO HOPE FOR,6ANSWERS WITHIN A REASONABLE TIME. THIS BOOK
WILL DEAL WITH THE COMPUTATIONAL ASPECT RATHER THOROUGHLY . . . "

19 By PERMISSION FROM THE THEORY OF GAMES AND LINEAR PROGRAMMING BY
S. Vuapa. COPYRIGHTED . MeTHuew anp CoMmPany, LTD.
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Reese?0 says, "IN COMPUTING, THE AVAILABILITY OF LARGE FAST MACHINES
HAS CHANGED THE FACE OF INDUSTRIAL RESEARCH, AND WE SHALL BE HARD PRESSED
TO PROVIDE TRAINED USERS OF THESE MACHINES. AS THE TELEPHONE COMPANY'S
LEASED LINES PROBLEM SUGGESTS, ONE OF THE BOUNDARY CONDITIONS IMPOSED ON
MANY INDUSTRIAL PROBLEMS IS THE EASE WITH WHICH THE PROPOSED FORMULATION OR
SOLUTION YIELDS TO EVALUATION BY AUTOMATIC COMPUTATION. MOREOVER THE AVAIL-
ABILITY OF LARGE~SCALE FAST COMPUTERS HAS MULTIPLIED THE NUMBER OF PROBLEMS
FOR WHICH INDUSTRY SEEKS MATHEMATICAL SOLUTION, AND HAS GIVEN INDUSTRY A
POWERFUL TOOL FOR ATTACKING SOME PROBLEMS FOR WHICH NO ANALYTICAL PROCEDURES
WERE FORMERLY SOUGHT."

WITH REGARDS TO ANALOG AND DIGITAL DEVICES LEHMER STATES:21 "EVERY
ENGINEER KNOWS THAT COMPUTING DEVICES ARE OF TWO TYPES, ANALOG AND DIGITAL
(TO EMPLOY THE TERMS COMMONLY USED IN THIS COUNTRY), AND HE KNOWS WELL THE
OISTINCTIVE FEATURES OF EACH., THE AUTHOR HAS COME TO THE CONCLUSION, IN
HIS CONVERSATIONS WITH ENGINEERS ABOUT THEIR PREFERENCES IN COMPUTING DE~-
VICES, THAT THEY FAVOR THE ANALOGUE DEVICE FOR ACTUAL USE BUT PREFER TO
BUILD A DIGITAL DEVICE. THIS IS QUITE NATURAL. THE ENGINEER HAS BEEN
TRAINED TO THINK OF A FUNCTION AS A SMOOTH CURVE, AND HE 18 CERTAINLY MORE
AT HOME WITH RECORDING [NSTRUMENTS SUCH AS VOLTMETERS AND OSCILLOSCOPES
THAN WITH COUNTING MECHANISMS. ALSO THE ENGINEER WITH A PROBLEM HAS BEEN
TAUGHT TC USE SMALL SCALE MODELS, SO THAT A SIMULATOR OR AN EQUIVALENT
CIRCUIT CERTAINLY APPEALS TO HIM AS MORE 'DOWNM TO EARTH' THAN THE REALLY
DOWN=TO-EARTH METHOD OF CONSTRUCTING A MATHEMATICAL MODEL AND SOLVING THE
MATHEMATICAL PROBLEM THE PROCEDURE NECESSARY FOR THE APPLICATION OF DIGITAL
TECHNIQUES.

"WHEN IT COMES TO CONSTRUCTION, THE DIGITAL COMPUTER CERTAINLY OFFERS
A WIDER VARIETY OF ENGINEERING EXPERIENCE. UNTIL RECENTLY, THE MAI!N EFFORT
IN IMPROVING THE ANALOGUE DEVICE HAS BEEN IN THE DIRECTION OF PROMOTING THE
MANUFACTURE OF MORE ACCURATE AND CONSTANT COMPONENTS, A NECESSARY BUT RATHER
UNINSPIRING TASK. NOw THERE 1S A GROWING TENDENCY TO ATTACH NEW TYPES OF
EQUIPMENT TO THE ANALOGUE INSTALLATION IN ORDER TO INCREASE |TS FLEXIBILITY
AND OVER-ALL USEFULNESS. THIS TENDENCY, 1F CONTINUED,; WILL ATTRACT MORE
ENGINEERS TO THIS FIELD THAN IN THE PAST . « .+ «

"PERHAPS THE MOST SIGNIFICANT LIMEITATION OF THE ANALOGUE DEVICE IS NOT
ITS LOW ACCURACY BUT ITS LACK OF LOGICAL FLEXIBILITY. THE FACT IS THAT T
HANDLES ONLY ONE INDEPENDENT VARIABLE, TIME. THE OUTSTANDING PROBLEMS OF

20 gy PERMISS{ON FROM MaTHEMATICIANS IN THE MArRkETPLACE BY N. Regs.
CoPYRIGHTED 1958, AMERICAN MATHEMATICAL MONTHLY, VoL. 65, NrR 5,
May 1958,

21 By PEAMISSION FROM MaTHEMATICS For THE MoDERN ENGINEER BY E, F.
Beckensacd, CoPYRIGHTED 1956. McGraw-HiLL Book Company, Inc.

23



TODAY ARE NO LONER PROBLEMS CONCERNING ORDINARY DIFFERENTIAL EQUAT IONS, BUT
ARE PROBLEMS OF SYSTEMS WHICH ARE DISTRIBUTED IN SPACE AND LEAD TO PARTIAL
DIFFERENTIAL EQUATIONS IN TWO OR MORE INDEPENDENT VARIABLES. 1T 15 TRUE

THAT, WiTH SOME MATHEMATICAL KNOW=HOW CERTAIN OF THESE PARTIAL DIFFERENTIAL
EQUATIONS CAN BE 'SEPARATED' INTO ORDINARY DIFFERENTIAL EGUATIONS WITH THE
BOUNDARY CONDITIONS GIVING RISE TO EJGENVALUE PROBLEMS. [N MANY CASES,
HOWEVER, THIS TECHNIQUE I35 NOT APPLICABLE. OF CCURSE, DISTRIBUTED SYSTEMS

CAN SOMETIMES BE 'LUMPED' TO PRODUCE AN ORDINARY DIFFERENTIAL EQUATION OF AN
EQUIVALENT PROBLEM BUT THIS TAKES REAL UNDERSTANDING OF THE PROBLEM IN ORDER
TO GIVE MORE THAN A QUALITATIVE INTERPRETATION OF THE WORD TEQUIVALERT « « o o

THE TERM 'DISCRETE=-VARIABLE DEVICE,' THOUGH NOT IN SUCH COMMON USE,
REALLY DESCRIBES THE ESSENTIAL FEATURE OF THE DIGITAL COMPUTER. FROM THE
POINT OF VIEW OF THE DiSCRETE=-VARIABLE DEVICE, THINGS ARE TO BE COUNTED
RATHER THAN MEASURED; MATHEMATICS IS NOT GEOMETRY BUT ARITHMETIC; THE UNI-
VERSE IS QUANTIZED, AND THIS INCLUDES MATHEMATICS. [NTEGRALS ARE BUT SUMS,
AND DERIVATIVES ARE. BUT DIFFERENCE QUOTIENTS; FUNCTIONS ARE DISCONTINUOUS
EVERYWHERE; LIMITS, INFINITIES, AND INFINITESIMALS DO NOT REALLY EXIST.
WORSE THAN THAT, DIVISION IS NOT THE INVERSE OF MULTIPLICATION, AND EVEN
ADDITION 1S NOT ALWAYS POSSIBLE (BECAUSE OF OVERFLOW} . . . .

"A FEW WORDS MAY BE SAID ABOUT A FINAL CLASS OF PROBLEMS, THOSE INVOLVING
DISCRETE VARIABLES. MANY OF THESE ARE RELATIVELY NEW PROBLEMS AND OWE THEIR
INTEREST AND IMPORTANCE TO THE RISE OF THE DIGITAL COMPUTER, FOR WITHOUT SUCH
INSTRUMENTS OF CALCULATION MOST OF THESE FPROBLEMS WOULD BE IMPOSSIBLE TO SOLVE.

"DiSCRETE~VARIABLE PROBLEMS ARISE IN SUCH FIELDS AS OPERATIONS ANALYSIS,
LOGISTICS, CRYSTAL AND MOLECULAR STRUCTURE, AND THE DESIGN OF EXPERIMENTS,
THEY ALSO ARISE IN THE DESIGN AND PROGRAMMING OF DIGITAL COMPUTERS. IN ALL
SUCH PROBLEMS WE MAVE A FiNITE BUT OFTEN LARGE NUMBER OF CHOICES OF VARIABLES
HAVING FINITE DIFFERENCES. ANY SUCH CHOICE RESULTS IN A SITUATION TO WHICH
WE CAN ATTACH A MEASURE OF GOODNESS.

"THUS IN ADOPTING THE GISCRETE~VAR|IABLE POINT OF VIEW WE SEEM TO GO BACK
To PYTHAGORAS. DBEFORE BECOMING UNDULY ALARMED AT SUCH A PROSPECT, THE ENGi-
NEER SHOULD REALIZE THAT HE iS5 ALREADY WELL VERSED [N DISCRETE~VAR!ABLE TECH-
NIQUES IN HiS EVERYDAY USE OF THE DESK CALENDAR. [N FACT, THE TYPICAL DIGI~-
TAL COMPUTER DOES THE SAME THINGS THAT A DESK CALCULATOR AND ITS OPERATOR DO,
ONLY IT DOES THEM AUTOMATICALLY AND RAPIDLY."

Joun HArRLING oF OrBIT L¥D, LowDON, ENGLAND CLA!MS:EZ "CoNS i DERABLE CON-
FUSION EXISTS OVER THE BEST TERMINOLGGY TO USE. THE TERM 'MonTE CarLO' IS
PRESENTLY SOMEWHAT FASHIiONABLE; THE TERM 'SIMULATION' IS TO BE PREFERRED,

22
BY PERMISSION FROM SIMULATIONS TECHNIQUE in OPERATIONS RESEARCH=A

Review BY J. HARLING, COPYRIGHTED 1954, THE JourNAL OF OPERATIONS.
RESEARCH SocleTY of AMERICA, VoL. 65, Nr 3, May-June 1958.
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BECAUSE 1T DOES NOT SUGGEST THAT THE TECHNIQUE iS LIMITED TO WHAT [S FAMILJAR
TO STATISTICIANS AS A SAMPLING EXPERIMENT.

"By SIMULATION IS MEANT THE TECHNIQUE OF SETTING UP A STOCHASTIC MODEL
OF A REAL SITUATION, AND THEN PERFORMING SAMPLING EXPERIMENTS UPON THE MODEL.
THE FEATURE WHICH DISTINGUISHES A SIMULAT!ON FROM A MERE SAMPLING EXPERIMENT
IN THE CLASSICAL SENSE 1S THAT OF THE STQCHASTIC MODEL. WHEREAS A CLASSICAL
SAMPLING EXPERIMENT IN STAT!STIiCS S MOST OFTEN PERFORMED DIRECTLY UPON RAW
DATA, & SIMULATION ENTAILS FIRST OF ALL THE CONSTRUCTION OF AN ABSTRACT MODEL
OF THE SYSTEM TO BE STUDIEDR.

"IN USING A SIMULATION TO INVEST |GATE THE PROPERTIES OF A REAL SYSTEM,
THE FOLLOWING STAGES MAY BE DISTINGUISHED:

1. REDUCTION OF THE RAW DATA OF THE PROBLEM TO AN APPROPRIATE FORM,

2. CONSTRUCTION OF A .MODEL OF THE REAL SYSTEM WHiCH NE{THER OVER=
SIMPLIFIES THE SYSTEM TQ THE POINT WHERE THE MODEL BECOMES TRIVIAL, NOR
CARRIES OVER SO MANY FEATURES FROM THE REAL SYSTEM THAT THE MCDEL BECOMES
INTRACTABLE AND PRCHIBJTIVELY CLUMSY. .

3» BRINGING THE DATA AND THE MODEL TOGETHER IN A SAMPL ING EXPERIMENT,
WHOSE PURPOSE 1S TO DISCOVER HOW THE REAL SYSTEM BEHAVES UNDER A VARIETY
OF PRESCRIBED CONDITIONS.

"AT EACH OF THESE STAGES, THERE ARE SEVERAL PRECAUTIONS TCO BE TAKEN,
AND MANY USEFUL TECHNIQUES EXIST FOR EXTRACTING THE MAXIMUM AMOUNT OF INFQR-
MATION FROM THE DATA AVAJILABLE IN A REASONABLE PERIQD OF TIME AND AT A
REASONABLE CQST. THESE TECHNIQUES W(LL BE DISCUSSED BRIEFLY IN THE PAPER.

"OWiNG PARTLY TO THE CONFUS:ON OF TERMiNOLOGY, AND PARTLY TO THE FAGT
THAT SPECJALISTS IN MANY DiFFERENT FIELDS HAVE WORKED ON THE SIMULAT|ON
PROBLEM, THERE IS LiTTLE PUBLiSHED L!TERATURE ON SIMULATION, AS COMPARED
WiTH MONTE CARLO TECHNIQUES. MOST WRITERS HAVE APPROACHED THE PROBLEM
EITHER AS PURE MATHEMATICIANS WHO USE A SAMPLING EXPERIMENT TO SOLVE A
DETERMINIST!C PROBLEM, OR AS STATIST:CiAN5S WHO PROPERLY ENOUGH HAVE BEEN
CONCERNED W!TH REDUCI!NG THE VARIANCE OF THEIR SAMPLING EXPERIMENTS. LITTLE
HAS BEEN WRITTEN ABOUT THE OPERATIONS RESEARCH USE OF SIMULATION, AND SUCH
PRACTICAL APPLICATIONS AS HAVE BEEN PUBLISHED SEEM TO MAKE L{TTLE USE OF
THE VERY VALUABLE WORK THAT THE THEORETICIANS HAVE DONE. THE TENDENCY SEEMS
TO HAVE BEEN EITHER TO PERFORM 'BRUTE FORCE' SIMULATIONS LACKING ANY SORT
OF STOCHASTIC INGENUiITY, OR ELSE TO BE EXCLUS!VELY PREOCCUPIED WITH THE
FORMAL PROBLEMS INVOLVED . . . .

"NEARLY ALL OPERATIONS-RESEARCH SiMULAT{ONS FALL INTO THE LAST TWO
CLASSES OF TRE FiRST TABLE IN SEcTioN il}, AND THE REST OF THE PAPER WILL
BE DEVOTED TO THESE TYPES OF SIMULATION.



"ALTHOUGH A CONSIDERABLE VOLUME OF WORK HAS BEEN DONE BY OPERATIONS~-
RESCARCH GROUPS BOTH IN UNiTED KiNGDOM AND THE UNITED STATES ON THE SUBJECT
OF SIMULATION, THERE IS A DEARTH OF PUBLISHED CASE HISTORIES. THE REASON
FOR THIS IS5 PROBABLY THAT A SIMULATION UNDERTAKEN BY AN INDUSTRIAL COMPANY
CONTAINS THE KIND OF DATA THAT A COMPANY DOES NOT WISH TO DISCLOSE. Fur-
THER, THE STRUCTURE OF THE SIMULATION WILL OFTEN GIVE IMPORTANT CLUES TO
THE COMPANY FUTURE PLANS.

"THIS 15 MUCH TRUER OF A SIMULATION THAN OF MANY OTHER OPERATIONS=
RESEARCH STUDIES, BECAUSE, AFTER ALL, A SIMULATION 1S A MQDEL OF SOME PART
OF THE COMPANY'S OPERATIONS AND WILL USUALLY CARRY OVER UNCHANGED MANY OF
THE FEATURES OF THE COMPANY'S BUSINESS,

"THE EFFECT OF THIS LACK OF PUBLISHED INFORMATION ON OPERATIONS«
RESEARCH SIMULATION 1S UNFORTUNATE: THE IMPRESSION IS GIVEN THAT THE USE
OF SIMULATION 15 RESTRICTED TO SOLVING MATHEMATICAL PROBLEMS, OR ELSE PROB~
LEMS THAT ARISE IN NUCLEAR PHYSICS OR IN SOME OTHER PURELY TECHNOLOGICAL
CONTEXT.' :

WEsST, oF THE Ramo~-WooLribce CORPORATION, HAS THE FOLLOWING TO SAY WiTH
REGARDS TO THE PRESENT STATE=OF~THE=-ART OF SIMULATION AND CONTROL SYSTEMS
pESIGN:23  MIN SUMMARY, COMPUTERS ARE WIDELY USED IN THE ANALYSIS OF CON-
TROL SYSTEMS. COMPUTER APPLICATIONS TO CONTROL SYSTEM DES|GN ARE PRESENTLY
IMPLEMENTATIONS OF THE CUT AND TRY APPROACH. THE FUTURE WILL PROBABLY SEE
MORE SOPHISTICATED APPLICATIONS, HOWEVER + - o« .

"JUST AS ONE WOULD HOPE TO FIND A BETTER DESIGN PROCEDURE THAN CUT AND
TRY, IT IS HOPED THAT A BETTER USE QF THE COMPUTER CAN BE FOUND FOR CONTROL
SYSTEM DESIGN. ONE APPROACH 15 TO LET THE COMPUTER CONDUCT A SERIES OF
EXPERIMENTS AND MQDIFY 175 OWN RESPONSE S0 AS TO FIND SOME SORT OF AN OPT|-
MUM . INIT{ALLY THESE APPROACHES WIiLL BE LITTLE BETTER THAN THE CUT AND TRY
APPROACH OQUTLINED ABOVE,

"HoWEVER, AS i{MPROVED TECHNIQUES OF SPECIFYING DESIRED RESPONSE AND OF
MEASURING DEVIATIONS FROM THE DESIRED RESPONSE ARE EVOLVED, THIS METHOD WILL
BECOME MORE USEFUL. DR. BELLMAN'S DYNAMIC PROGRAMMING SEEMS TO OFFER A NEW
COMPUTER APPROACH TO CONTROL SYSTEM SYNTHESES."

ALONG SIMILAR LINES ARROW HAS THE FOLLOWING TO SAY:Eh "1 WOULD LIKE ToO
TURN, FOR A FEW MINUTES, TO COMPUTATION. COMPUTING AGAIN, AS A PRACTICAL
ART, HAS THE SAME OPEN, TENTATIVE CHARACTER THAT WE HAVE ASS|GNED SPECIFIC

23

By PERMISSION FrROM THE RoLE oF CoMPUTERS In-AnALYS1S anp DeEsiGn oF
ConTroL SYsTeMs BY G. P. WesT. CoPYRIGHTED 195C. INSTITUTE OF RADIO
ENGINEERS, TRANSACTIONS ON AuToMATIC CONTROLS, JuLy 1958.
2k

By PERMISSION FROM DECISION THEORY AnD OPErATIONS BY K. J. ARROW.
CoryriaHTED 1957. THE JOURNAL OF THE OPERATIONS RESEARCH SOLIETY OF
AMERICA, VoL. 5, Nr 6, Decemser 1957.
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OPERATIONS-RESEARCH PROBLEMS. BEYOND THE SIMPLEST CASES, ANY COMPUTING PRO-
CEDURE IS A PROCEDURE OF SUCCESSIVE APPROXIMATION. WITH COMPUTING MACHINES
OF FINITE S1ZE, WITH HUMAN BRAINS OF LIMITED CAPACITY, THE MERE STATEMENT
THAT WE MUST ACHI{EVE AN OPTIMUM IS5 NOT A SUFFICIENT GUIDE. IN FACT, IN A
SENSE, THE PROBLEM OF OPTIMAL DECISION MAKING COULD BE REGARDED AS COMPLETED
ONCE WE FORMULATE THE PROBLEM AND ISSUE THE INJUNCTION: 'FIND THE MAX[IMUM.'

"FROM A CERTAIN POINT OF YIEW, PROVIDING CERTAIN EXISTENCE AND UN|QUE=-
MNESS CONDITIONS ARE MET, THIS 5 A SOLUTION TO THE ORIGINAL PROBLEM, THE
ONLY OBJECTION TO [T 15 IN MANY CASES A USELESS SOLUTION, AND MOST OF
DECISION THEORY, IN FACT, CONCERNED WITH THE QUEST!ON OF GETTING SiMPLE,
MANAGEABLE EXPRESSIONS FOR THE SOLUTIONS TO VARIOUS SPECIFIC PROBLEMS, NOH,
A SOLUTICON IN CLOSED FORM IS A NICE THING TO HAVE, ALTHOUGH SOMETIMES |IT IS
NOT VERY USEFUL. BUT WHAT 1S MORE IMPORTANT 1S THAT THIS IS NOT THE MOST
COMMON SITUATION., FoOrR THE MosT PART, WE HAVE TO EXPECT THAT OUR SDLUTIONS
CAN ONLY BE OBTAINED BY METHODS OF SUCCESSIVE APPROXIMATIONS OF ONE KIND
OR ANOTHER. THE CLASSIC METHOD OF FINDING A MAXI!MUM IS THE GRADIENT METHOD,
OR REALLY, THE GRADIENT FAMILY OF METHODS. THAT 15, IN THE CASE QF AN
UNCONSTRAINED MAXIMUM, WE SEEK TO CLIMB UPHILL. NOH, AS | REMARKED EARLIER,
THE TYPICAL MAXIM|ZAT!ON PROBLEM IN OPERATIONS~RESEARCH 1S A PROBLEM OF A
CONSTRAINED MAXIMUM, IT 1s PossiIBLE IN MANY CASES TO EXTEND THE CLASSICAL
GRADJENT METHOD TO THE PROBLEM OF CONSTRAINED MAXIMA BY MAKING USE OF
EQUIVALENCE OF CONSTRAINED MAXIMA AND GAMES,

"THE POINT TO BE STRESSED 1S THAT WITH THE GRADIENT METHOD OR ANY OTHER
METHOD OF SUCCESSIVE APPROXIMATIONS, WE NEVER STRICTLY SPEAKING ACHIEVE THE
SOLUTIONS, WE ONLY STOP WHEN WE HAVE DECIDED THAT THE PATH 15 STABLE ENOUGH
TO WARRANT CESSATION. FURTHER, AS THE PROBLEM BECOMES MORE AND MORE COMPL]«=
CATED, THE POSSIBILITY OF ACHIEVING EVEN THIS FIELD OF APPROXIMATION DE-
CREASES. ONE CAN ALWAYS THINK Of REALISTIC PROBLEMS THAT ARE BEYOND THE
CAPACITY OF ANY GIVEN SET OF COMPUTING MACHINES. THIS 1S NOT TO MINIMIZE
THE TREMENDOUS DEVELOPMENTS THAT THE LAST FEW YEARS HAVE SEEN. PROSLEMS
THAT COULD HAVE BEEN REGARDED AS WITHIN THE' REALM OF PRACTICAL SOLUTION NOW
FALL INTO TH1S REALM. ALL THIS SEEMS TO DO, OF COURSE, IS TO WHET OUR
APPETITE FOR STILL BIGGER PROBLEMS.

"THERE ARE SEVERAL APPROACHES TO THE COMPUTATIONAL PROBLEM. ONE IS TO
EXAMINE CLOSELY THE SPECIAL FEATURES OF THE PARTICULAR PROBLEM, TRY TO DEVISE
COMPUTATIONAL METHODS THAT WILL EXPLOIT THOSE SPECIAL FEATURES AND SO BE
EFFICIENT. (FROM A THEORETICAL VIEWPGINT, THE DISCOYERY OF NEW COMPUTATIONAL
METHODS 15 ALS50 A DECISION-THEGRETICAL PROBLEM, AND YET IT 15 NOT ONE THAT
HAS BEEN MUCH HANDLED OR WELL HANDLED. IT REALLY BECOMES A CREATIVE ACT,
WITHIN THE PRESENT REALM OF OUR EXPERIENCES.) THE SIMPLEX AND OTHER METHODS
IN LINEAR PROGRAMMING AND THE METHOD OF FUNCTIONAL EQUATIONS IN DYNAMIC PRO~
GRAMMING ARE EXAMPLES OF THIS PROCEDURE. AS WE GET TO MORE AND MORE SPECIFIC
PROBLEMS WE FIND CERTAINLY MORE AND MORE TOE-HOLDS FOR COMPUTATIONAL METHODS.
BuT USUALLY THERE ARE SEVERE LIMITATIONS TO THEIR APPLICABILITY.
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"A SECOND TECHNIQUE HAS BEEN TO TREAT, NOT THE ORIGINAL PROBLEM, BUT A
SIMPLER PROBLEM THAT CAN BE MANAGED. |T 1S HOPED THAT ENOUGH OF THE FEATURES
OF THE ORIGINAL PROBLEM WiLL REMAIN SO THAT THE SOLUTION US USEFUL. THIS
METHOD 1S, iN FACT, UNIVERSAL. | DOUBT IF THERE iS ANY REAL PROBLEM THAT
ANYBODY HAS HANDLED WHICH DOES NOT INVOLVE A SUPPRESSION OF AT LEAST SOME
COMPLICATIONS. AGALN, THE QUESTION OF SIMPLIFICATION IS A CREATIVE ACT,

"STILL A THIRD TECHNIQUE 1S TO ABANDON THE SEARCH FOR THE OPTIMUM AND
SEEK INSTEAD TO FiIND SATISFACTORY PROCEDURES. THAT 15, WE GUESS AT A PRO-
CEPURE, AND THEN SEEK TQ DETERMINE, BY REAL OR SIMULATED EXPERIENCE, WHAT
ITS OPERATING CHARACTERISTICS ARE. IF THEY STRIKE US AS BEING GOOD ENOUGH,
WE USE THEM. OTHERWISE, WE SEARCH FOR MORE AND BETTER METHODS. IN & SENSE,
TH!S LAST PROCEDURE, WHICH TIES IN CLOSELY WITH WHAT PSYCHOLOGISTS CALL THE
ACHIEVEMENT OF A LEVEL OF ASPIRATION, IS A DYNAMIC COUNTERPART TO THE SEEK-
ING OF AN OPTIMAL METHOD. In FACT, IT IS A METHOD OF SUCCESSIVE APPROXIMA-
TIONS APPLIED TO THE CHOICE OF A COMPUTING METHOD. ONCE A SATISFACTORY
METHQD HAS BEEN FOUND, THERE 5 ALWAYS A TENDENCY TO TRY TO IMPROVE IT.
PRESUMABLY THIS PROCESS WILL CONTINUE UNTIL IT - CONVERGES TO THE OPTIMUM.
LI1KE ALL METHODS OF SUCCESS{VE APPROXIMATIONS, THE CONVERGENCE WILL TAKE
INFINITELY LONG, IF INDEED 1T CONVERGES AT ALL.

"To suM UP: AT ANY STAGE IN OUR OPERATIONS RESEARCH, WE DEAL WITH
PROBLEMS MORE LIMITED THAN THOSE WE KNOW ARE REAL = MORE LIMITED IN TIME IF
NOT IN OTHER WAYS. OuR PROBLEM MUST BE STATED AS IF IT WERE CLOSED, 50 THAT
IT CAN BE SOLVED, AND YET ITS ELEMENTS MUST CONTAIN WITHIN THEMSELVES THE
POSSIBILITY OF FITTING INTO A LARGER MODEL. THE OBJECTIVE FUNCTION MUST
REFLECT THE FACT THAT THE PROBLEM WiLL HAVE IMPLICATIONS FOR THE FUTURE.
AMONG OTHER THINGS, WE MUST ASSIGN VALUATION TO INFORMATION=GATHERING AND
RECORDING ACTIVITIES !N OUR SHORT RUN OR PROXIMATE OBJECTIVE FUNCTION, WE
MUST ASS!IGN VALUES TO THE PHYSICAL OUTCOME OF THE CURRENT DECISION SITUATION,
WHICH SOMEMOW REFLECT OUR ESTIMATES, HOWEVER, FORMED OF THEIR IMPLICATIONS
FOR THE FUTURE. WE MUST, IN SHORT, BUILD IN THE POSSIBILITY OF LEARNING INTO
OUR DECISION MODELS. FURTHER, EVEN THEN, WE FREQUENTLY CANNOT SOLVE OUR
DECISION PROBLEMS [N THE SENSE OF GENUINELY ACHIEVING AN OPTIMUM WITH A SMALL
EXPENDITURE OF COMPUTING EFFORT. S0 WE ARE APPROXIMATING JN MANY DIFFERENT
DIRECTIONS, THIS KIND OF VIEW OF THE WORLD MAY SEEM SOMEWHAT DISTURBING TO
SOME., ONE LIKES THE iDEA THAT THERE IS A FINJTE SOLUTION TO PROBLEMS - THAT
THEY ALL CAN BE SOLVED WiTH EXPENDITURES OF SUFFICIENT MENTAL ENERGY. BuUT
THE WHOLE H!STORY OF MATHEMATICS AND SCIENCE IS A DISFPROOF OF ANY SUCH SIMPLE
NOTION., AND PERSONALLY, | NOW FIND IT RATHER ATTRACTIVE THAT THE WORLD S AN
OPEN ONE, AND THAT THERE ALWAYS WILL BE NEW PROBLEMS TO SOLVE. AT NO STAGE

WILL WE BE ABLE TO REST CONTENT. As GOETHE SAYS! 'WHO EVER STRIVES, HIM CAN
WE Save.'"
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IN CONCLUSION, A THOUGHT FROM TAYLOR25 SEEMS APPROPRIATE: "FINALLY,
LET ME BRUSH ON WHAT | FEEL ARE TWO GENERAL PROBLEMS OR OBSTACLES IN NON~-
LINEAR CONTROL. ONE 1S THE LACK OF USEFUL EXISTING MATHEMATICS OR MATHE=-
MATICAL TooLS., HERE | FEEL THAT THERE WILL BE REQUIRED A BOOTSTRAP TYPE
OPERATION BETWEEN MATHEMATICIANS AND OPERATING CONTROL ENGINEERS., THE COM-
MON MEETING GROUND MAY WELL BE COMPUTER EXPERIMENTATION."

KRON'S APPROACH TO THE SYSTEM COMPLEXITY PROBLEM 1S PRESENTED IN HIS
ARTICLE "TEARING, TENSORS, AND TOPOLOGICAL MopeLs: 20 "Topav's ENGINEERS,
OPERATING IN AN AGE OF ACCELERATED TECHNOLOGY, ARE BE!NG CONFRONTED WITH
INCREASINGLY MORE COMPLEX AND INTERCONNECTED PHYSiCAL STRUCTURES (SYSTEMS),
WHICH REQUIRE ANALYSIS AND SOLUTION., THE ELECTRONIC COMPUTER WAS DESIGNED
TO FiILL THIS NEED. HoWeEVER, MANY PROBLEMS ARE CONSTANTLY SEVERAL STEPS
AHEAD OF THE COMPUTERS, OVERSHOOTING THE LATTER'S CAPACITY TO PRODUCE ECO-
NOMICAL SOLUTIONS.

"IN THIS UNEQUAL RACE BETWEEN THE SI1ZE OF PROBLEMS AND THE CAPACITY OF
COMPUTERS, A SUCCESSION OF BLIND ALLEYS IS ENCOUNTERED. FIRST OF ALL, MANY
IMPORTANT CLASSES OF PROBLEMS CANNOT EVEN BE STATED MATHEMATI|cAaLLY. Func-
TION THEQRY CAMN TAKE CARE OF ONLY THE SIMPLEST GEOMETRICAL SHAPES; SUCH AS
SPHERES AND CYLINDERS. WHERE IT IS POSSIBLE TO FORMULATE THE PROBLEM, THE
PHYS)ICAL LABOR OF WRITING DOWN THE HUNDREDS, OR PERHAPS THOUSANDS, OF EQUA-
TIONS |15 OFTEN SIMPLY PROHIBITIVE. MOREOVER, EVEN IT IS POSSIBLE TO WRITE
THE PROBLEM DOWN, [T IS5 OFTEN FOUND THAT THE AVA|LABLE COMPUTERS ARE NOT
LARGE ENOUGH, OR FAST ENQUGH, TO CARRY THROUGH THE COMPUTATIONS ECONOMICALLY.

"THE CHASM BETWEEN THE IMMENSITY OF PROBLEMS AND THE LIMITED CAPACITY

OF THE COMFUTERS (AN, HMOWEYER, BE BRIDGED SOMEWHAT = FOR CERTAIN CLASBES OF
PROBLEMS = BY APPROACHING THE SITUATION FROM A NEW ANGLE. INSTEAD OF ASKING
FOR A STILL LARGER COMPUTER, THE PROPOQOSED METHOD OF ATTACK TEARS APART THE
OTHERWISE UNMANAGEABLE PHYSICAL OR ECONOMIC SYSTEM INTOC SEVERAL SMALLER PARTS,
SOLVES EACH PART SEPARATELY, THEN INTERCONNECTS THE PARTIAL SOQLUTIONS INTO
THOSE OF THE ORIGINAL SYSTEM. TEARING A PROBLEM APART ALSO ELIMINATES THE
NECESSITY OF STATING OR DEFINING THE PROBLEM MATHEMATICALLY IN ITS ENTIRETY.
A FORMULATION OF EACH SEGMENT ONLY, AND A STATEMENT OF THEIR INTERCONNECTION

HSUFFICES. THUS THE METHOD OF TEARING ALSC OPENS UP THE POSSIBILITY OF SOLV-
ING A CLASS OF METHEMATICALLY~UNDEF INABLE ENGINEERING PROBLEMS.

> _
5 By PERMISSION FROM PrROBLEMS IN NoN-LINEARITY IN ADAPTIVE SELF~
OpTiMizing SysTeEmMs BY C. F. TavLor. CoPYRIGHTED 1950. INSTITUTE
ofF RaD1O ENGINEERS TRANSACTIONS ON AuToMaTic CoNTROL, JuLy 1958.

By PERMISSION FROM TEARING TENSORS AND TOPOLOGICAL MopeLs BY G. Krow.
CoPYRIGRTED 1957. THE AMERICAN SCIENTIST, VoL. 45, Ne 5, Dec. 1957.
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"PHYS ICAL AND FUNCTIONAL TEARING

{T sHouLp NOT BE BELIEVED; HOWEVER, THAT AS SOON AS THE QUESTION OF
PIECEWISE SOLUTION OF PROBLEMS 15 RAISED, ONE CAN PROCEED AND IMMEDIATELY
ACCOMPLISH THAT TASK. THE SYSTEMATIC INTERCONNECTION OF PARTIAL SOLUTIGNS
15 A PROCEDURE THAT MANY ENGINEERS HAVE THCOUGHT 7O BE IMPOSSIBLE, OR AT
LEAST EXTREMELY DIFFICULT AND LABORIOUS, HENCE A THANKLESS AND FRU!TLESS
UNDERTAKING, IN TRIVIAL CASES, AS IN MECHANICAL STRUCTURES COUPLED AT ONE
OR A FEW POLINTS, EACH PROBLEM IS SOLVED ON ITS OWN MERIT, WITHOUT ANY ATTEMPT
AT SYSTEMATIZATION OR GENERALIZATION. SCIENTIFIC LITERATURE ALSO CONTAINS
SCATTERED REFERENCES TO CUT=AND-TRY PROCEDURES FOR SOMEHOW PIECING TOGETHER
SPECIAL TYPES OF PARTIAL SOLUTIONS. THE METHOD OF TEARING, TO BE PRESENTED
HERE, MEETS THAT EVER PRESENT PROBLEM HEAD~ON,

"DURING HIS PROFESSIONAL CAREER THE AUTHOR HAS BEEN ENGAGED IN DEVELOP-
ING A" NEW ENGINEERING TOOL, A NEW METHOD OF LARGE-SCALE THINKING, WHICH
WOULD ENABLE THE ENGINEER TO ORGANIZE, ANALYZE, AND = |F POSSIBLE -~ SOLVE
HIGHLY COMPLEX STRUCTURE AND SYSTEMS IN EACH STAGE , AND IN A ROUTINE MANNER.
To MEET THaT PURPQOSE, HE HAS GRADUALLY DEVELQPED A THREE-~PRONGED TOOL, WHICH
UTILIZES THE THEORY OF TENSORS, TOPOLOGICAL MODELS IN THE FORM OF ELECTRICAL
CIRCUITS,; AND THZ YZARING APART OF SUCH CIRCUITS PHYSICALLY OR FUNCTIONALLY,
(OR BOTH WAYS SIMULTANEOUSLY) INTO SMALLER PIECES. (THE ELECTRIC CIRCUITS
ARE MERELY DRAWN ON A SHEET OF PAPER AND NEED NOT BE PHYSICALLY REALIZABLE).
THE PHYSICAL SUBDIVISION LEADS TO EASIER AND FASTER DIGITAL OR ANALOGUE
MANIPULATIONS,; WHILE THE FUNCT]IONAL SUBDIVISION AIMS AT MORE CORRECT AND
MORE VISUALIZABLE PHYSICAL CONCEPTS ESPECIALLY IN MULTI-ENERGY SYSTEMS,

"FOR TWO DECADES THE AUTHOR HAD TO BE CONTENT WITH CONCENTRATING UPON
THE ORGANIZATION AND SETTING-UP OF EQUATIONS OF PERFORMANCE FOR A LARGE
VARIETY OF SYSTEMS IN A PIECEWISE MANNER. ONLY LATELY HAS THE TOOL ADVANCED
TO SUCH A STAGE THAT THE MISSING LINKS BETWEEN SETTING-UP EQUATIONS PIECE-
WISE, AND SOLVING EQUATIONS PIECEWISE, HAVE BEEN D{SCOVERED AND PUT TO PRAC=
TiCAL USE.

"LINEAR AND NON=LINEAR PHYS[CAL PROBLEMS NUMERICALLY AS WELL AS ANALYT!~
CALLY (BY FACTORING OUT PARAMETERS)}, TIME-VARYING AND E|GENVALUE PROBLEMS,
ALSO OPTIMIZATION OF PHYSICAL AND ECONOMIC SYSTEMS, ALL [N SMALL INSTALL-
MENTS, MULTI=ENERGY STABILITY PROBLEMS, TORN FRACTIONALLY AS WELL AS PHYSI-
CALLY, HAVE BEEN SOLVED. THE INTERCONNECTED SOLUTIONS ARE IN ALL CASES AS
EXACT, {OR AS APPROXIMATE), AS IF THE SYSTEM HAD NOT BEEN TORN APART, BUT
SOLVED IN ONE PIECE.

"LIMITATIONS OF PIECEW!{SE SOLUTIONS

DURING THE LAST FEW YEARS THE AUTHOR HAS ALSO CLARIFIED SOME ©OF THE
MATHEMATICAL AND PHYSICAL ASPECTS OF THE METHOD OF. TEARING. 1W0 DEFINITE
LiMITATIONS CAN ALREADY BE DISCERNED. FIRST oF ALL, A GIVEN SET OF EQUATIONS
CANNOT BE TORN., (PART!ONING A MATRIX {5 A CONCEPT DIFFERENT FROM TEAR!NGa)
THE EQUATIONS MUST BE ACCOMPANIED BY THE ORIGINAL SYSTEM (OR RATHER BY A
GRAPHICAL MODEL OF IT) AND T 1S THE LATTER PART THAT 15 TORN APART, NOT THE
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EQUATIONS. THE REASON IS THAT THE GRAPH CONTAINS MORE INFORMATION ABOUT THE
ORIGINAL SYSTEM THAN THE EQUATIONS,

"SECONDLY, IT 1S IMPORTANT THAT THE NUMBER OF LINKS TORN SHOULD BE MUCH
 SMALLER BY COMPARISON THAN THE NUMBER OF VARIABLES OF THE ENTIRE SYSTEM,

(As THE CONSTRAINED FORCES APPEARING AT THE CUT ALSO MUST BE SOLVED FOR).
HENCE, IF THE SYSTEM IS TIGHTLY COUPLED, THE METHOD OF TEARING SHOULD NOT

' BE USED FOR THE SOLUTION. (FOR INSTANCE, THE N-BODY PROBLEM OF GRAV|TATION,
OR A NETWORK IN WHICH EVERY POINT 1S CONNECTED TO EVERY OTHER POINT) . . . .

"THEN ON SOME FUTURE OCCASION, ONE CAN INTERCONNECT SEVERAL OF THE
SOLVED SYSTEMS ON FILE, TO FORM SOLUT|ONS OF STILL LARGER SUPERSYSTEMS.
SEVERAL OF THE SOLVED SUPERSYSTEMS IN TURN CAN BE [NTERCONNECTED I[N THE STILL
MORE DISTANT FUTURE. THE SOLUTIONS GROW LIKE A PYRAMID, LAYER UPON LAYER,

BE IT AN EIGENVALUE SOLUTION, OR AN OPTIMIZATION, OR STRAIGHT NUMERICAL
INVERSION. NEVERTHELESS, THE OVER~ALL SOLUTION REMAINS EXPRESSED AT ALL
TIMES IN THE FORM OF SMALL, MANAGEABLE MATRICES.

"I¥ THE ENGINEER DECIDES 7O ALTER A SMALL PORTION OF HIS SYSTEM, ALL
SO0LUT1ON-MATRICES 2FZ RETAINED EXCEPT THE ONE WHICH 1S TO BE CHANGED. THERE
1S NO‘NEED TO START THE PROCESS OF SOLUTION OF THE ENTIRE SYSTEM ALL OVER
AGAIN FOR EACH SMALL CHANGE, AS 15 USUALLY THE CASE WI!TH ONE-PIECE SOLUTIONS. .

"SINCE EVERY STEP IN THE SOLUTION PROCESS REPRESENTS SOME PHYSICALLY
EXISTING EXCITATION (OR RESPONSE) OR PHYSICALLY EXISTING STRUCTURES, THE
CORRECTNESS OF THE PART!AL RESULTS CAN CONSTANTLY BE CHECKED BY APPLYING
PHYSICAL TESTS WITH KNOWN RESULTS. ALSO, iN A PIECEMEAL INVERSION, THE
ROUND~OFF ERRORS DO NOT ACCUMULATE AS FAST AS [N A ONE-PIECE GAUSSIAN INVER~
SION « o o o

"As MANY OF THE IMPORTANT PARTIAL DIFFERENTIAL EQUATION OF QUANTUM
PHYSICS ARE LINEAR (ScHrRODINGER, DIRAC, KLEIN=GORDON, ETC., EQUATIONS) TOPO-
LOGICAL MODELS OPEN UP A NEW METHOD OF ATTACK FOR THEIR SOLUTION. THE THEORY
OF LINEAR VECTOR SPACES OFFERS LABOR-SAVING DEVICES TO REDUCE THE LARGE NUM=
BER OF EIGENVALUES OCCURRING IN FIELD PROBLEMS TO A PRACTICABLE SMALL NUMBER,
WiTHOUT REDUCING THE NUMBER OF DEGREES QOF FREEDOM OF THE SYSTEM . o o .

"TIME-VARY ING SOLUTIONS

WHEN LONG TIME-INTERVALS AT ARE ASSUMED, THE IMPLICIT RECURRENCE FORMU-
LAE OF VON NEUMANN REQUIRE THE !NVERSION OF A MATREX AT EACH STEP BY SOME
ITERATIVE PROCEDURE. THE ALMOST=D!AGONAL FORM OF A FACTORIZED INVERSE MATRIX -
ESTABLISHED ONCE AND FOR ALL BY THE METHOD OF TEARING -~ REQUIRES OMLY A SIMPLE
SUBSTITUTION AT EACH STEP, WITHOUT THE DANGER OF (NSTABILITY DUE TO JTERATION.

"ANOTHER APPROACH IS ALSO POSSIBLE. WHEN THE TIME AND SPACE VAR|ABLES
CAN BE SEPARATED, THE SPAT!AL FIELD NETWORKS CAN BE SOLVED (BY THE METHOD OF
TEARING) AS EIGNEVALUE PROBLEMS, WITH A PRACTICAL NUMBER OF THE LOWER QR
HIGHER EiGNEVALUES (SEPARATION~CONSTANTS) AND E1GENVECTORS. THE TIME VAR A~
TION OF THE WAVES ARE THEN EXPRESSED BY LAPLACE TRANSFORMS. BOTH SCALAR AND
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VECTOR FUNCTIONS CAN BE 50 EVALUATED.

"THE NUMEROUS TYPES OF AUTOMATIC=CONTROL SYSTEMS, AS WELL AS PROBLEMS
IN THE SYNTHESIS OF NETWORKS = W!TH THEIR REQUIREMENTS TO CALCULATE A LARGE
NUMBER OF Z2ER0GS AND POLES - SEEM TO OFFER A FERTILE GROUND FOR APPLICATIONS
OF THE METHOD OF TEARING . . . .

"SUCH SUCCESSFUL PIECEWISE SOLUTIONS 8Y PHYSICAL AND FUNCTIONAL, FINITE
AND [NFINITESIMAL TEARING, POINT THE WAY TO THE POSSIBILITY OF AN EVENTUAL
PIECEWISE ATTACK UPON HIGHLY COMPLEX SYSTEM=STABILITY PROBLEMS WHICH INVOLVE
MORE THAN TWO TYPES OF INTERACTING ENERGIES, SUCH AS, FOR INSTANCE, THE
STABILITY OF MAGNETO=HYDRODYNAMIC SYSTEMS. OF COURSE THERE ARE MANY OBSTA-
CLES ALONG THE WAY WHICH ARE YET TO BE OVERCOME, BEFORE SUCH [NTRICATE S5YS~
TEM PROBLEMS CAN BE TORN BOTH PHYSICALLY AND FUNCTIONALLY . . . o

TEARING ECONOMIC AND OTHER PROBLEMS

IN ENGINEERING AND PHYSICS THE GIVEN SYSTEM I1TSELF DEFINES AN UNDER-
LYING TOPQLOGICAL STRUCTURE, THAT 15, A CIRCU|T-MQDEL. HENCE, THE ANALYSIS
AND SOLUTION OF PHYSICAL SYSTEMS BY TEARING IS5 A NATURAL, SELF-EVIDENT
ATTRIBUTE. HOWEVER, THERE ARE MANY MATHEMATICALLY=DEF INABLE PROBLEMS WHERE
THE EXISTENCE OF AN UNDERLYING TOPOLOGICAL STRUCTURE 1S NOT 08VIQUS, BUT
NEVERTHELESS CAN BE CONJECTURED. IF A SEARCH IS MADE FOR A STRUCTURE T
USUALLY CAN BE F!RMLY ESTABLISHED.

SUCH STRUCTURES EXiST, FOR INSTANCE, IN MANY OPERAT|ONS RESEARCH AND
IN A LARGE CLASS OF CTHER ECONOMIC PROBLEMS. WHEREVER MANUFACTURED GOODS
OR OTHER ENTITJES ARE ROUTED ALONG PREASSIGNED PATHS, THE UNDERLYING TOPO-
LOGICAL STRUCTURE OF THE PROBLEM |5 RATHER WELL DISCERNED, EVEN THOUGH IT
MIGHT BE OBSCURED BY THE SUPERIMPOSED ALGEBRAIC STRUCTURE. In GENERAL,
PROBLEMS FORMULATED N TERMS OF BLOCK*DIAGRAMS OR FLOW-D]AGRAMS DO POSSESS
AN ALREADY-DEF INABLE TOPQLOG!CAL STRUCTURE. THE AUTHOR HAS SUCCEEDED IN
CPTIMIZING 'LENEAR PROGRAMMING' OF TRANSPORTATION PROBLEMS PIECEWISE.

"AT ThE OpeN PaneL Discussion ofF THE 1957 PGAC Symposium on Non-LINEAR
CONTROL, A SPEAKER FROM THE FLOOR REPEATED AN ANCEDOTE HE HAD HEARD ' . . .
THAT A VERY DIFFICULT MISSILE PROBLEM IS TO TAKE AN OBLATE SPHEROID, TRANS=
MiTTED FROM A MOViING TARGET THROUGH A MOVING ATMOSPHERE AND HIT [T, OR HAVING
TRANSMITTED IT FROM A MOVING PLATFORM, HURL IT THROUGH A MOVING TARGET o+ . o
THE COMPUTER THAT YOU BUILD TO DO THIS WOULD CERTAINLY FILL THIS ROOM IF YOU
DID A GOOD JOB., (YET) YOU CAN TAKE A HALF-wITTED HALFBACK AND DO IT NINE
TIMES OUT OF TEN ANY SATURDAY AFTERNOON ALL FALL. {THE POINT 1S} THAT LAST
YEAR, SOME PLACE, THIS HAPPENED TO MANY OF THESE OPERATORSI OF MUCH BETTER
COMPUTERS THAN YOU HAVE IN YOUR ENGINEERING DEPARTMENTS."
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WEAPON SYSTEM

A WEAPON SYSTEM MAY BE cons:osg%o IN TERMS OF TS CONSTITUENT PARTS
IN ACCORDANCE WITH Goopbe AND MacHoL®! As: INPUTS, COMMUNICATION, LOGICAL
CONTROL, REFLEXIVE CONTROL, HANDLING AND OQUTPUTS. REFLEXIVE CONTROLS REFER
TO ERROR TYPE SERVOS ETC., WHEREAS LOGICAL CONTROLS IMPLY THE CAPABILITY OF
DECISION MAKING. THE STEPS IN SYSTEM DESIGN AS CONCEIVED 8Y GOODE AND MACHOL
ARE sHOWN IN Fia. 1-2.

THE SYNTHESIS AND ANALYSIS OF A WEAPON SYSTEM UTILIZING MODERN HIGH
SPEED COMPUTING MACHINES MAY BE CONSIDERED IN THE FOLLOWEING FOUR MAIN PHASES.

1. OVER~ALL SYSTEM STUDY OF THE COMPLEX BATTLE (MULTIPLE TARGETS AND
TARGET (NTERCEPTORS) AGAINST PRESENT AND FUTURE TARGETS TO DETERMINE THE
DESIGN CRITERIA FOR TARGET INTERCEPTOR WEAPON SYSTEM.

2. SYNTHESIS AND ANALYS!S OF DESIGN EQUATIONS OF PROPOSED WEAPON SYS-—
TEM TO SATISFY REGUIREMENTS ofF 1. (PRE~-HMARDWARE.] THIS AREA INCLUDES PURELY
MATHEMATICAL SIMULATION.

3. ANALYSIS OF PHYSICALLY REALIZED SYSTEM. ANALYSIS BASED ON LABORA~-
TORY TESTS OF HARDWARE AS |7 BECOMES AVAILABLE. PHase 3 WILL.SERVE TO MAKE
PHASE 2 ANALYS!S STUDIES CONT|NUOUSLY MORE REALISTIC,

h. CVER=ALL SYSTEM ANALYSIS OF PHYSICALLY REALIZED WEAPON SYSTEM (BASED
ON PHASE 3 RESULTS). THIS PHASE ENTAILS REPLACING THE THEORETICAL WEAPON
SYSTEM CAPABILITY OF PHASE 1 BY THE ACTUALLY ENGINEERED SYSTEM.

THE MAJOR DISTINCTION BETWEEN PHASE 2 AND 3 AND PHASE 3 AND 4 s THaAT
A SINGLE UNIT OF THE OVER-ALL SYSTEM 1S CONSIDERED, WHEREAS PHASES 1 anp U
CONSIDER MULTIPLE UNITS AND UTILIZE THE CONCEPTS OF GAME THEORY.

For THE PURPOSE OF THE MATHEMATICAL SIMULATION OF A PHYSICAL SYSTEM,
THE SYSTEM IS BROKEN DOWN INTOQ MAJOR AND MINOR SUBSYSTEMS ACCORDING TO
CISTINCT FUNCTIONAL RELATIONS. THE IDEAS OF THESE FOUR PHASES ARE SHOWN IN
FiGure 1-3.

FLOW DIAGRAMS

IN ORDER TO EXPEDITE THE COMMUNICATION OF SYSTEM CONCEPTS, THE FLOW
DIAGRAM HAS EVOLVED. THE VERBAL FLOW DIAGRAM GIVES A GENERAL PICTURE OF THE

el By PERMISSION FroM CONTROL SYSTEMS ENGINEERING. BY H. H. GOODE AND
© anp R. E. MacroL. CoPYrRiGHTED 1957. McGRAw=HiLL Book CoMPANY, INC.
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SYSTEM BLOCKS AND THE FLOW OF VARIABLES BETWEEN BLOCKS |N TERMS OF VERBAL
PHYSICAL STATEMENTS. THE MATHEMATICAL MODEL FLOW DIAGRAM ~SEPARATES THE

MANY MATHEMATICAL EQUATIONS INTO SUBSETS OF EQUATIONS SO THAT THE FUNCTIONAL
RELATION BETWEEN THE VARIOUS SUBSETS OF EQUATIONS IS EVIDENT (FOR SYSTEMS

NOT TOO INTRICATELY COUPLED). THE BLOCK D3iAGRAM APPROACH SHOWS THE FORCING
FUNCTIONS OF THE VARIOUS BLOCKS OF EQUATIONS. FoOR EXAMPLE, A S|X DEGREE OQF
FREEDOM GUIDED MISSILE SIMULATION OVER A ROTATING SPHEROIDAL EARTH |5 BROKEN
DOWN INTO A SMALL NUMBER OF BASJ/C MATHEMAT)CAL OPERATIONS SUCH AS SUMMAT ION,
INTEGRATION, MULTIPLICATION, OR: INTO GROUPS OF OPERATIONS SUCH AS COORDINATE
TRANSFORMAT [ ON BLOCKS, DIRECTION COSINE MATRIX GENERATION BLOCKS, ETC., AS
SHOWN IN FIGURES ]—h =A AND 1-&—5. THE OTHER IMPORTANT BLOCKS OF THE SIMULATED
MIS5|ILE SYSTEM ARE THE GENERATIODN OF THE THREE FORCLCES) AERQDYNAMIC, GRAV[TA=
TIONAL, AND THRUST; SOLUTIQON OF THE AIR FRAME DYNAMICS (TRANSLATION AND ROTA=-
T[ONJ; PLUS THE SIMULATION OF THE GUIDANCE AND CONTROL SUBSYSTEMS-

THIS TYPE OF SIMULATION FOR RIGID MODELS 1S "OLD STUFF" TO MANY LABORA-
TORIES AND THE MAIN PROBLEMS HMERE ARE MORE COMPUTERS WITH HIGHER SPEED AND
ACCURACY. HOWEVER, THE DEVELOPMENT OF THE PROBABILISTIC MODELS FOR THE AlIR-
FRAME, GUIDANCE AND CONTROL COMPLEX, |5 THE NEXT LARGE ADVANCEMENT TO BE
ACHIEVED. THE FIRST APPROACH |5 AN EXTENSION OF THE PRESENT SIMULATION
TECHNIQUES OF SIMULATION OF RADAR NOISE, TO A MORE REALISTLC SIMULATION
INCLUDENG MANY MORE OF THE SYSTEM STOCHASTIC VARIABLES AND PARAMETERS AS
SHOWN IN FicURE 1-5. THIS APPROACH REQUIRES MORE COMPUTING CAPACITY THAN
IS CURRENTLY AVAILABLE IN THE TYPICAL WEAPON SYSTEM SIMULATION LABORATORY
TeDAY. FROM A STATISTICAL STUDY OF THE COMBINED EFFECT OF THE MANY STOCHAS-
TIC VARIABLES A FUNCTIONAL APPROACH MAY BE FEASIBLE.

FUNCTiONQL FLOW D$AGRAMS (OR MODELS) OF INTEREST TO SYSTEMS STUDIES ARE:
1. PHYSICAL SYSTEM.

2. SDIMULATED SYSTEM.

THE PHYSICAL.AND SIMULATED SYSTEMS MAY BE FUETHEE DEé:c;gD BY:

1. VERBAL FLOW: MODELS.
2. MATHEMATICAL MonéLs°

PHysicaL SysTeM

As sTaTED ABOVE, TWO FLOW CHARTS ARE OF VALUE RELATING TG THE PHYSICAL
SYSTEM, THESE ARE:

1. VERBAL PHYSICAL SYSTEM.MODEL.
2. MATHENAT:CAL MODEL OF PHYSI1CAL SYSTEM.

THE MATHEMATICS OF THE PHYSICAL SYSTEM SHoOULD DEFINE THE SYSTEM DESIGN
EQUAT]ONS AND ALSO INCLUDE THE CHARACTER!ST!CS OF THE PHYSICAL COMPONENTS
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USED TO INSTRUMENT THE EQUATIONS {i.E. THE TRANSFER CHARACTERISTICS AND THE
NOISE).

SIMULATED SYSTEMS

TWe FLOW CHARTS ARE OF VALUE RELATING TC THE SIMULATED SYSTEM, THESE
ARES '

1. VERBAL SIMULATED SYSTEM FLOW. CHART.

il

2. MATHEMATICAL MODEL OF THE SIMULATED SYSTEM.

IT MAY BE OF VALUE TO ALSO HAVE OVERLAYS OR A FURTHER BREAKDOWN OF THE
SYSTEM INTO GUIDANCE MODES,; SUCH AS!

1. LAUNCH GUIDANCE.
2. Mipcourst GUIDANCE.
3. TERMINAL GUIDANCE.

THUS THE PHYSJICAL SYSTEM AND SIMULATED SYSTEM BLOCK DIAGRAMS ABOVE WOULD
BE ALSO AVAJLABLE IN REDUCED FORM SHOWING ONLY THE EQUIPMENT OR EQUATIONS
PREVAILING DPURING THAT PARTICULAR GUIDANCE MODE,

THE DIFFERENCE BETWEEN THE PHYSICAL SYSTEM AND THE SIMULATED SYSTEM

IS OBVIQUS AFTER A MOMENTS REFLECTION, FOR EXAMPLE, FREE =~ GYRO GIMBAL P|CK~
OFF ANGLES ARE AVAILABLE DUE TO THE PHYSICAL MOTION OF THE MISSILE IN ACTUAL
FLIGHT, WHEREAS IN THE S{MULATED SYSTEM, THE ANGULAR MOTION OF THE AIRFRAME
MUST BE COMPUTED FROM THE ROTATIONAL EQUATIONS OF MOTION BASED ON WIND TUN-
NEL DATA. THUS, KNOWING THE ROTATION OF THE AIRFRAME AND THE GYRO ORIENTA-
TION, TWQ OF THE EULER ANGLES ORIENTING THE TWO FRAMES MAY BE COMPUTED, AND
HENCE THE IDEAL GIMBAL ANGLE PICK=0FFS ARE SIMULATED.

VERBAL FLOW MODELS

THE VERBAL FLOW CHARTS ARE OF VALUE TO GIVE A DESCRIPTION OF THE QVER=-
ALL SYSTEM FLOW OF THE DESIGN VARJABLES. THIS BIRDS~EYE GLIMPSE REVEALS
GENERAL DESIGN CONCEPTS WITHOUT REQUIRING A KNOWLEDGE OF THE MATHEMATICAL
NOMNECLATURE .

ForR THE PURPOSE OF THE MATHEMATE CAL SIMULATION OF A PHYSICAL SYSTEM,
THE SYSTEM 1S BROKEN DOWN [INTQ MAJOR AND MINOR SUBSYSTEMS ACCORDING TO
FUNCTIONAL RELATIONS, THE WEAPON SYSTEM 1S CONSIDERED TO CONSIST OF THREE
MAJOR SUBSYSTEMS AS SHOWN N Fig. 1-6.

A, TARGET MAJOR SUBSYSTEM.

B. TARGET INTERCEPTOR MAJOR SYBSYSTEM,

bo
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C. TARGET INTERCEPTOR LAUNCH CONTROL MAJOR SUBSYSTEM,

THE THREE MAJOR SUBSYSTEM BREAKDOWN ENUMERATED ABOVE WILL BE GIVEN THE
FOLLOWING BROAD AND GENERAL INTERPRETATION FOR THE PURPOSES OF THIS REPORT
(THE WRITER BEING FULLY AWARE THAT THERE ARE ALMOST AS MANY DIFFERENT CON-
CEPTS OF HOW A WEAPON SYSTEM SHOULD BE BROKEN DOWN AS THERE ARE MISSILEMEN}-

TarRGET=- INTERCEPTOR LauNCH ConTROL SUBSYSTEM

THE PRIMARY FUNCTION OF THIS SUBSYSTEM |5 TO DETERMINE THE TIME THE TAR-
GET INTERCEPTOR SHALL BE RELEASED FROM ITS LAUNCHER TQ CARRY OUT |ITS MISSION
OF DELIVERING ITSELF SUFFICIENTLY CLOSE TO A DESIGNATED TARGET. THE LAUNCH
CONTROL FUNCTION MAY BE BROKEN DOWN INTO THREE (MORE oRr LESS) SUB=FUNCTIONS
TO BE LOGSELY DESIGNATED AS:

1. TARGET DETECTION AND FILTERING OF NON=-THREATS.
2. TARGET TRAJECTORY FITTING AND PREDICTION.
3. [INTERCEPTOR SELECTION.

THE TARGET DETECTION MAY BE BASED ON MANY YEARS POLITICAL BUILD-UP TQ )
DETERMINE SUCH AND SUCH A COUNTRY S AN ENEMY OR ON DETECTING INCOMING ENEMY
MISSILES IN AN ANTI-MISSILE DEFENSE SYSTEM, THE TRAJECTORY FITTING MAY INVOLVE
GEODETIC SURVEYS OF EARTH FIXED TARGETS OR RADAR TRACKING OF INVADING VEHI-
CLES. iN THE FORMER CASE, PREDICTION IS5 AN EASY MATTER, AS EARTH'S ROTATION
RATE 5 KNOWN. THE FINAL PHASE, INTERCEPTOR SELECTION, MAY INVOLVE MOVING
THE TARGET=-INTERCEPTOR BY RAIL, SHIiP, ETC., TO ADVANCED LINES, THE FINAL
ATMING AND FIRING AT EARTH FiXED OR MCVING TARGETS. In PRACTICE, THE LOGIS~
TICS - MATHEMATICS (FN ITS INFANCY ) 15 NOT INCLUDED IN THE SIMULATION STUDY
OF TARGET AND TARGET=INTERCEPTOR MOTJ/ON. HONEVER, FOR AIR DEFENSE STUD{ES,
THE LOGIC, DECISION MAKING £TC.y, WHICH ARE PART OF THE PHYSICAL SYSTEM MAY
ALS0 BE SIMULATED.

TArRGET INTERCEPTOR MAJOR SUBSYSTEM

TH!S SUBSYSTEM 15 THE GUIDED MISSILE AND ITS WARHEAD. THE TARGET~INTER=
CEPTOR MAJOR SUBSYSTEM MAY BE CONSIDERED AS CONSISTING OF THREE SUBSYSTEMS:

1+ VEHICLE AND ENVIRONMENT SUBSYSTEM,
2. CONTROL SUBSYSTEM.
3. GUIDANCE SUBSYSTEM.

AS SHOWN IN F1a 1-7 anp FiG. 10 FOR THE PHYSICAL MODEL AND THE SIMULATED
MODEL.
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VEHICLE AND ENVIRONMENT SUBSYSTEM

THis SUBSYSTEM MAY BE BROKEN DOWN WITH REGARDS TO PHYSICAL OR SIMULATED
SUBSYSTEM.

PHYs1caL VEWICLE AND ENVIRONMENT SUBSYSTEM

THE BREAKDOWN FOR THE PHYS|CAL SYSTEM IS1

1.

2.

3.

AIRFRAME,
ProPULSION.

WARHEAD.

SIMULATED VEHICLE AND ENVIRONMENT SUBSYSTEM

THE BREAKDOWN FOR THE SIMULATED SYSTEM 153

1.
2.
3.
4.

FORCES AND MOMENTS ON THE AIRFRAME.
MissiLE DYNAMICS,
MISSILE KINEMATICS,

WARHEAD.

KINEMATICS REFER TO THE MOTION OF GEOMETRICAL POINTS WHEREAS DYNAMI|CS:
REFER TO THE MOTION OF MASSES.

1.

2.

THE FORCES AND MOMENTS TO BE SIMULATED ARE:
A. AERODYNAMIC.

B. THRUST.

c. GraviTAaTIONAL (NewTonian).

Ricio Bopy.

THE MISSILE DYNAMICS REFER TO THE THREE TRANSLATED AND THREE ROTATIONAL
(FOR A RIGID BODY ASSUMPTION) SCALAR EQUATIONS OF MOTION, BASED ON THE TWO
YECTOR EQUATIONS.

A, = F, + F. + F. (1-1)

o
£
]
|
+
=
+
=
.
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ANY ONE OF THE MANY EXPRESSIONS FOR THE INERTIAL ACCELERATION OF THE MISSILE
of £quaTions (10-24) twrouaw Eauation (10-U8) may Be usep N Eauation (1-1)
ABOVE FOR THE. TRANSLATIONAL ACCELERATION OF THE MiSSILE.

Non-Rigio Bopy

EQUATIONS DEFINING THE FLEXURE OF THE A|RFRAME (ELASTIC!TY) INCLUDED
IN THE SIMULATION WILL REVEAL ANY INSTABILITY CAUSED BY SENSING DEVICES
SENSING THE VIBRATIONS QF THE A{RFRAME.

3. MissiLe KINEMATICS.

Tr1s sLock (SEE Fig. 1-7) COVERS A NUMBER OF SETS OF EQUATIONS, DEFPEND=-
ING UPON THE REFERENCE FRAME IN WHICH THE MISSILE DYNAMICS ARE SOLVED AND
ON THE SUBSEQUENT USE OF THE ACCELERATION OF THE MISSILE CENTER OF MASS.
SOME OF THE EQUATIONS (FOR EXAMPLE) SOLVE FOR THE BODY ATTITUDE ANGLES, FOR
TRAJECTORY COGRDINATES, FOR MISSILE SPEED, FLIGHT SPEED, FLIGHT PATH ANGLES,
AND OTHER VARIABLES RELATING TO THE GEOMETRICAL ASPECTS OF FLIGHT.

CONTROL SuBSYSTEM

THE CONTROL OF THE ORIENTATION AND THE MOTION OF THE MISSILE 1S ACHIEVED
INDIRECTLY THROUGH THE CONTINUOUS CONTROL OF TWO OF THE FORCES {THRUST aAND
AERODYNAMIC) OF EQUAT foN (1-1), THAT is: '

vA = (F. + F + F
( R Fng
WHIiCH DEFINES THE MOTION OF THE MISSJLE.

THE THRUST FORCE F, MAY BE CONTROLLED BY GIMBALLED MOTORS, VARIABLE
THRUST {MAGNITUDE), JET VANES, JET BOTTLES ETC.

THE AERODYNAM{C FORCE FA IS CONTROLLED (WHILE IN THE SENSIBLE ATMOQSPHERE
ONLY) BY CONTROLLING THE PDSITION OF MOVABLE CONTROL SURFACES.

THE CONTROL-SURFACE POSITIONING SERVOS ARE USUALLY CONSIDERED FOR TwO
ORTHOGONAL PLANES {LOOSELY REFERRED TO AS PITCH PLANE AND YAW PLANE). THE
MAJORITY OF PRESENT DAY CONVENT)ONAL M|SSILE SYSTEMS MAY BE CONSIDERED TO
HAVE THREE PRIMARY (AERODYNAM|C FORCE) SERVO CONTROL LOOPS:

1. PITCH PLANE CONTROL LOOP.

2. YAwW PLANE CONTROL LOOP.

3. RoOLL CONTROL L0OP (FOR ROLL STABILIZED MISSILES).

ANOTHER MAJOR SERYC CONTROL LOOP IS CONTROLLING THE ORIENTATION OF A GlM=
BALED BODY WHICH MAY BES
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1. RADAR Di15H CONTROL SERVO.
2. STABLE PLATFORM CONTROL SERVO.

GUIDANCE SUBSYSTEM

A DISTINCT BREAK BETWEEN GUIDANCE AND CONTROL MAY BE NON=EX|STENT, HOW-
EVERy; A CONVENIENT BREAK 1S OFTEN MADE.. EXACTLY WHERE THE BREAK OCCURS IS
NOT REALLY IMPORTANT, SINCE THE MECHANISM UNDER CONSIDERATION CAN FUNCTION
ONLY AS AN INTEGRATED INTERACTING SYSTEM. CONSEQUENTLY, THE BREAKDOWN MAY
BE A FUNCTION OF THE INDIVIDUAL STUDY GROUPS CONCEPT OF ESTHETICAL FOR THE
PARTICULAR MISSILE UNDER STUDY.

THIS REPORT CONSIDERS THE FUNCTIDN OFf GUIDANCE AS THE "SRAaINS" oF THE
SYSTEM. EXAMPLES SERVE BETTER THAN DEFINITIONS FOR THI5 MULTI=FACET CON-
CEPT. FOR EXAMPLE, CONSIDER AN AIR-TO~AIR INERTIALLY GUIDED MISSILE TO BE
SLAVED TO A STRAIGHT LINE AT THE LAUNCH ALTITUDE. ONE COULD MEASURE THE
ACCELERATION NORMAL TO THE VERTICAL PLANE {FLAT, NON-ROTATING EARTH ASSUMP-
TION) AND NULL OUT THE DOUBLE INTEGRAL {LINEAR NORMAL DISPLACEMENT OF THE
MISSILE FROM THE VERTICAL PLANE) AND CONSEQUENTLY SLAVE THE MISSILE CENTER
OF MASS TO/THE VERTICAL PLANE. WITHIN THE VERTICAL PLANE ONE COULD SLAVE
THE MISSILE TO A CONSTANT ALTITUDE. THE RESULT OF THE TWO GEOMETRICAL CON-
STRAINTS ON TWO OF THE RECTANGULAR COORDINATES OF THE MISSILE LEAVES ONLY
ONE DEGREE OF FREEDOM FOR THE MOTION OF THE MISSILE CENTER Of MASS.

SUCH A SYSTEM COULD CONCEIVABLY HAVE NAVIGATION ACCELEROMETERS ON A
STABLE PLATFORM TO MEASURE THE ACCELERATION OF THE CENTER OF MASS NORMAL TO
THE VERTICAL PLANE. AT THE SAME TIME A BODY FIXED ACCELEROMETER MAY BE A
PART OF THE CONTROL LOOP TO INCREASE THE RESPONSE OF THE AIRFRAME MOTION
CONTROL LOOP. THUS THE TWO SENSING DEVICES MAY BE CONSIDERED AS:

T. NAVIGATIONAL ACCELEROMETERS {HIGH ACCURACY).
2. CONTROL ACCELEROMETERS (LOW ACCURACY REQUIREMENTS).

"THE GUIDANCE PHILOSOPHY FOR THE ABOVE EXAMPLE IS TO SENSE AND COMPUTE
TWO COCRDINATES OF THE MiSSILE CENTER OF MASS AND EQUATE THEM TO ZERO. THE
CONTROL FUNCTION IS TO BE SURE THAT THE MISSILE CONTROL SURFACES MOVE 350 THAT
THE AERODYNAMIC FORCE CAUSES THE NEEDED MISS|LE ACCELERATION TO NULL OUT THE
DISPLACEMENT. THUSy; IF THE MISSILE 1S ROLL STABILIZED THE TASK MAY BE SIMPLE,
HOWEVER, IF THE MISSILE 1S SPINNING, THE - COORDINATION OF FIN MOTION {5 COM=
PLICATED,

THE GUIDANCE ALSO COMPUTES WHEN TO SEPARATE STAGES AND VARY THRUST.
ONE OF THE MAJOR FUNCTIONS OF THE GUIDANCE SYSTEM S THE MISSILE=TARGET
KINEMATICS., |N THE EXAMPLE OF THE STRAIGHT LINE- TRAJECTORY THE- TARGET WAS
ASSUMED TO BE ON THE LINE. THUS, A BREAKDOWN IN THE FUNCTIONS OF THE GUID-
ANCE SYSTEM MAY BE:

1. MISSILE KINEMATICS (SENSING MISSILE GEOMETRY VARIABLES AND THEIR
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TIME OF RATES OF CHANGE).
2. MiISSILE-TARGET KINEMATICS.

3. GUIDANCE SCHEME (FEEDS INFORMATION TO CONTROL SUBSYSTEM DEPENDING
ON PART{CULAR GUIDANCE PHILOSOPHY).

WARHEAD SIMULATION

THE GUIDED MISSILE WILL STATISTICALLY DELIVER THE MISSILE CENTER OF
MASS TO A DESIGNATED POINT IN SPACE. THE CIRCULAR PROBABLE ERROR {CEP) -
' SPHERE OF A GIVEN RADIUS INTO WHICH 50 PERCENT OF THE MISSILES Witt BE
DELIVERED (5 A MEASURE OF THE ACCURACY OF THE GUIDED MiSSILE SYSTEM. ONE
MUST SUPERIMPOSE THE STATISTICAL EFFECTS REFLECTING THE LETHALITY OF THE
WARHEAD UPON THE GEOMETRICAL PROBLEM OF MASS DELIVERY (GUIDED MISSILE
ACCURACY).

ENVIRONMENT
THE SIMULATION OF EXTERNAL WINDS, ATMOSPHERIC CONDITIONS, GRAVITATIONAL
ANOMALIES, HARDWARE RESPONSES UNDER VIBRATION, RADIATION FIELD, TEMPERATURE

ETC., MUST ALSO BE INCLUDED IN THE STUDY.

TARGET MAJOR SUBSYSTEM

THE FUTURE STATE=-OF~THE-ART OF ENEMY HARDWARE DEVELOPMENT 1S THE PRIMARY
FACTOR 1N DEFENSIVE WEAPON SYSTEM DESIGN REQUIREMENTS., THUS, IN A STUDY OF
THE TYPES | THRouvaH {V oF Fig. 1-3, ONE MAY SIMULATE TARGET MOTION.

THIS SIMULATION MAY ENTAIL A COMPLETE GUIDED MISSILE SIMULATION E.G.
AN ICBM RE-ENTERING THE ATMOSPHERE ETC., TQ OBTAIN MORE SIMPLE MATHEMATICAL
EXPRESSIONS DEFINING THE GEOMETRICAL BEHAVIOR OF THE TARGET.

WEAPON SYSTEM MATHEMAT ICAL MODEL

A FEw OF THE MANY VALUES TC BE DERIVED FROM THE MATHEMATICAL MODEL ARE:

1. GIVE TO ALL INTERESTED PERSONNEL AN UNDERSTANDING OF THE BASIC SYS5-
TEM THEORETICAL DESIGN EQUATIONS. THIS FUNCTION SHOULD SEPARATE THE GUIDANCE
AND CONTRCL PHILOSCPHIES FROM PARTICULAR INSTRUMENTS USED IN THE PHYSICAL
REAL.| ZATION OF THE THEORETICAL EQUATIONS.

2. REVEALS WHERE THE DESIGNER OF THE SYSTEM HAS MADE APPROXIMATIONS AND
ASSUMPTIONS FOR THE RELAXATION OF INSTRUMENTATION REQUIREMENTS, THUS, POINTING.
OUT AREAS OF INVESTIGATION OF THE DEGRADATION OF THE SYSTEM PERFORMANCE DUE
TO THIS ECONOMY OF EQUIPMENT.

3. THE MATHEMATICAL MODEL OF THE SYSTEM IS IN A LANGUAGE UNDERSTANDABLE

TO ELECTRONJC COMPUTERS, THUS ENABLING VERY INVOLVED SYSTEM STUDIES TO BE
MADE .,
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CRITERION FOR THE SELECTING OF A
MATHEMAT CAL MODEL FOR SIMULATION

THE SELECTION OF AN "OPTIMUM" SYSTEM OF EQUATIONS DEFINING THE PHYS|CAL
SYSTEM UNDER CONSIDERATION 1S A RELATIVELY DIFFICULT TASK., MANY OF THE
EQUATIONS DEFINING THE SUBSYSTEMS MAY BE OBTAINED BY CONVENTIONAL ANALYSIS
TECHNIQUES, FOR EXAMPLE,~ THE LUMPED=-PARAMETER ASSUMPTION UTIL(ZED IN _
DERIVING THE EQUATIONS FOR PASSIVE NETWORKS IN THE CONTROL SUBSYSTEM. How-
EVER, THE SIMULATION OF THE AIRFRAME ORIENTATION, THE AXES ALONG WHICH TO
SOLVE THE MISSILE TRANSLATIONAL MOTION, THE SIMULATION OF THE VAR1OUS
OTHER REFERENCE FRAME ORIENTATIONS, THE METHOD OF GENERATING THE CORRES-
PONDING DIRECTION COSINES AS FUNCTIONS OF THE VARIOUS EULER SEQUENCES, MAY
BE DONE IN MANY WAYS, THE ANSWERS TO THE ABOVE PROBLEMS ARE NOT UNIQUE AND
THE CHOICES SHOULD BE BASED ON A CONSIDERATION OF THE OVER=-ALL SYSTEM. SOME
OF THE CRITERION IN THE SELECTION OF THE MATHEMATICAL MODEL ARE:

1. THE MATHEMATICAL MODEL SHOULD CONTAIN THE SYSTEM VARIABLES WHICH
CAN AND WIiLL BE MEASURED DURING THE ACTUAL MISSILE FLIGHTS FOR COMPARISON.

2, SIMPLICITY IN-FCRM AND NUMBER OF EQUATIONS.

3. COMPATIBILITY OF SIMULATION MATHEMATICAL MODEL EQUATIONS TO THE
TYPE OF COMPUTER BEING USED WHETHER DIGiITAL OR ANALOG.

THE IMPORTANCE ©F THE COMPATIBILITY OF SYSTEM DATA MEASUREMENTS AND
MATHEMATACAL MODEL VARIABLES IS BORNE OUT BY A STATEMENT FROM GOODE AND
MAcHoL.

"ALMOST INVARIABLY OPERATIONAL EXPERIMENTS AND TESTS ON LARGE=SCALE
SYSTEMS COST MORE MONEY AND TAKE MORE TIME THAN WAS ORIGINALLY ESTIMATED;
ALMOST INVARIABLY |T APPEARS AFTERWARD THAT MORE EFFORT COULD PROFITABLY
HAVE BEEN SPENT ON PLANNING BEFORE THE MEASUREMENTS WERE UNDERTAKEN; AND
ALMOST INVARIABLY THE TASK OF DATA REDUCTION (S UNDERESTIMATED. |F A DOZEN
MOTION PICTURE CAMERAS ARE RECORDING AS MANY OBJECTS {SCOPES, DIAL READINGS,
AND THE LIKE) AT THE USUAL RATE OF 24 FRAMES PER SEOND, THEN A MILLION FRAMES
ARE BEING ACCUMULATED PER HOUR. |F TME DATA REDUCTJON INVOLVES MANUAL EXAM]|-
NATION OF THE FILM BY FRAME AS |IT OFTEN DOES, THEN MOST OF THE FILM IS PROB-
ABLY DESTINED FOR DEAD STORAGE WITHOUT EVER BEING USED."

ALSO, THE TELEMETRY AND OTHER DATA GATHERING REQUIREMENTS OF THE RANGE
MUST BE A FUNCTION OF THE SYSTEM EVALUATION CRITERION REQUIREMENTS, THUS THE
INTIMATE LINK BETWEEN THE MATHEMATICAL MODEL AND THE FEASIBLE EXPERIMENTS
MUST BE CONS!DERED.

letp.
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AS ANOTHER EXAMPLE, THE MISSILE TRANSLAT|ONAL ACCELERATION EQUATI|ONS
OVER A ROTATING SPHEROIDAL EARTH MAY APPEAR VERY SI{MPLE IN FORM [F THEY ARE
SOLVED IN AN INERTIAL REFERENCE FRAME, AND THE COMPONENTS OF THE AERQDYNAMIC,
GRAVITATIONAL, AND THRUST 'FORCES ARE TRANSFORMED TO THME INERTJAL FRAME. How-
EVERy {F THE MISSILE HAD A PLUMB=-BOB STABLE PLATFORM ABOARD AND THE ATTITUDE
CONTROL WERE BASED ON THE CONTROL OF THE ORIENTATION OF THE AIRFRAME WITH
RESPECT TO THE LOCAL TANGENT PLANE- TO THE SPHERQOID, THEN ONE WOULD LIKE TO
SIMULATE THESE PLATFORM GIMBAL PICK=OFF ANGLES,

IN THE FIRST CASE ONE MAY SELECT THE EULER ANGLES ORIENTING THE BODY
FRAME WITH RESPECT TO AN INERTIAL FRAME, IN THE LATTER CASE ONE WOULD BE
REQUIRED TO ORIENT THE BODY FRAME WITH RESPECT TO THE PLATFORM FRAME (HAVING)
ONE VECTOR ALONG THE LOCAL PLUMB=BOB VERTICAL AND THE OTHER TWC VECTORS
SOMEWHERE IN THE TANGENT PLANE DEPENDING ON THE TYPE OF PLATFORM AZIMUTH
SLAVING DESIGNED INTO THE SYSTEM,

CONSEQUENTLY, FOR LARGE SCALE SYSTEM SIMULATION ONE SHOULD NOT ARBI~-
TRARILY SELECT COORDINATE SYSTEMS BASED ON SIMPLICITY OF EQUATIONS ALONE.

THE SELECTION OF THE SIMULATION COORDINATES SHOULD BE ALSO BASED ON
THE GUIDANCE AND CLOKWNTROL SENSING DEVICES OF THE PHYSICAL SYSTEM WHICH SENSES
THE COCRDINATES AND THEIR TIME RATES.

IN A SIMILAR MANNER, OMNE SHOULD CONSIDER THE SELECTION OF EQUATIONS
THROUGHOUT THE SYSTEM. ‘

THE OBSERVATION OF PHYSICAL PHENOMENA IN ITS ENVJRONMENT IS THE FIRST
REQUIREMENT OF AN "INTELLIGENT" WEAPON SYSTEM. SINCE THERE APPEARS 7O BE
NO PHYSICALLY REAL)ZABLE OMNI-OBSERVATION DEVICES, THE PHYSICAL PROPERTIES
OF THE PHENOMENA MUST BE OBSERVED SELECTIVELY. CONSEQUENTLY, THE INSTRUMENT
MAK ING THE OBSERVATION IS SENSITIVE PIECEWISE. THUS, A FUNDAMENTAL CONCEPT
TO ALL PHYSICAL SCIENCES UTILIZING MATHEMATICAL ANALOGIES 15 THE CONCEPT OF
TRANSFER RELATION OR TRANSFORMATION,.

CONSIDER SOME PHENOMENA Et OF [INTEREST TO BE OBSERVED BY A DEVICE HAVING
KNOWN BEHAVIQR DESCRIBED MATHEMATICALLY BY T AND THE OUTRUT En KHOWN,

i T _ i

THEN THE PROBLEM HERE IS TO DETERMINE WHAT ET REALLY 15. In GENERAL, A
DEVICE WILL BE SENSITIVE TO PHYSI|ICAL PHENOMENA OTHER ‘THAN THAT OF INTEREST.
For EXAMPLE, IT MAY BE DESIRED TO MEASURE THE ACCELERATIONS OF A VEHICLE WITH
RESPECT TC |INERTIAL SPACE BY USING AN AIRBORNE INERTIAL ACCELEROMETER, SINCE
THE PROOF-MASS IN THE ACCELEROMETER IS 1TSELF SENSITIVE TO THE NEWTON!AN MASS
ATTRACTION FIELD, THE INSTRUMENT IS INCAPABLE OF MEASURING THAT COMPONENT OF
INERTIAL ACCELERATION QOF THE CARRYING VEHICLE CAUSED BY THE GRAVITATIONAL
FORCE ON THE VEHICLE~MASS,
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ANY ONE OF THE THREE QUANTITIES E}, Egs T, MAY BE CONSIDERED AS THE
UNKNOWN. IF E; IS CONSIDERED AS TARGET MOTION AND E, 1S A SPECIFIED TARGET
INTERCEPTOR PATH, THEN THE PROBLEM IS TO DESIGN A SYSTEM T TO DELIVER THE
INTERCEPTOR SUFFICIENTLY NEAR THE TARGET, A PROBLEM OF SYSTEM SYNTHESIS

(pEsiaN).

THE PROBLEM OF DETERMINING WHAT THE OUTPUT OF A GIVEN SYSTEM T wiLt BE
IN THE PRESENCE OF SPECIFIED INPUTS E3 1S THE PROBLEM OF ANALYSIS oF T.

THE TRANS?ORMATION T MAY BE LINEAR OR NON-LINEAR, AND THE INPUTS AND
OQUTPUTS MAY BE CONTINUOUS OR DISCRETE, THAT IS THE DEVICE MAY BE ANALOG AND
DIGITAL OR A COMBINATION OF DEVICES CONTAINING MANY SUB=-LOOPS, SOME OF WHICH
ARE ANALOG IN NATURE AND SOME OF WHICH ARE DIGITAL IN NATURE.

THUS, A MATHEMATICAL DESCRIPTION OF THE GEOMETRICAL RELATIONS AND THE
SYSTEM OF CONSTRAINT EQUATIONS WHICH EFFECT IT ARE THE BAS!S FROM WHiCH
"HARDWARE" {SENSING, CONTROL, THRUST, ETC., DEVICES) MAY BE DESIGNED TO
PHYSICALLY .REALIZE THE DESIRED S5iITUATION.

WEAPON SYSTEMS MAY BE CONSIDERED AS DEFENSIVE W. S, or As OFFENS|(VE
W. S. IN BOTH CASES, FUNDAMENTALLY ONE 1S CONCERNED WITH SENSING THE SPACE
COQRDINATES OF A TARGET AND A TARGET INTERCEPTOR AND TRANSLATING THE. COORDI-
NATES OF THE INTERCEPTOR SUFFICIENTLY CLOSE TO THE TARGET COORDINATES.

THE PROCESS OF GEOMETRICAL VARIABLE SENSING REQUIRES ENERGY EiTHER
RADIATED OR REFLECTED. KINETIC ENERGY IS REQUIRED FOR DYNAMIC INERTIAL
SENSING UTILIZING ACCELEROMETERS AND GYROS. FELECTRO-MAGNETIC ENERGY IS
REQUIRED IN OPTICAL TRACKING, RADAR TRACKING, AND INFRA-RED TRACKING SY5~
TEMS, ACOUSTIC ENERGY IS INVOLVED IN ACQUSTIC TRACKERS. THUS THE CONCEPT
OF GEQMETRICAL VARIABLE SENSING SYSTEMS MAY BE CLASSIFIED IN THE FOLLOWING
WAY . '

INTERNAL SENSiING SYSTEMS. THESE INCLUDE ACCELEROMETER, GYROS, STABLE
PLATFORMS {GENERALLY UTILIZING GYROS IN THE LOOP), ETC.

EXTERNAL SENSING SYSTEMS. THIS CLASS OF SENSING SYSTEMS REFERS TO THOGSE
HAVING SOME OF THE SENSING LOGP SYSTEM EQUIPMENT EXTERNAL TO THE INTERCEPTING
MISSILE (A RADFATING STAR IS NOT CONSIDERED AS SYSTEM EQUIPMENT, WHEREAS A
TARGET ACTING AS AN ENERGY REFLECTOR 1S A PART OF THE SENSING £QUIPMENT LOOP).
CONSEQUENTLY THIS CLASS OF DEVICES INCLUDES THE FAMILIAR RADAR,; INFRA=RED
TRACKERS AND ACOUSTIC TRACKERS.

A SHARP DISTINCTION BETWEEN EXTERNAL AND INTERNAL GEOMETRICAL SENSING
DEVICES 15 NOT IMPORTANT, THE GIST OF THE CLASSIFICATION |5 TO ACCENTUATE
THE GEOMETRICAL ASPECTS OF WEAPON SYSTEM DESIGN.

SENSING SYSTEMS MAY ALSO BE CLASSIFIED NITH'RéSPECT TO THE LOCATION OF

THE ENERGY DEVICES, RECEIVER OR TRANSMITTER. THESE WELL KNOWN CLASSIFICATIONS
ARE: '
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A

1. FuLLy AcTive. [N AN ACTIVE' SYSTEM THE zuensv SOURCE (TRANSMITTER)
AND THE RECEIVER ARE IN THE !NTERCEPTING MiSSILE. . )

2. SEMi=ACTIVE. |IN SEMI-ACTIVE SYSTEMS THE ENERGY SENSING DEVICE IS
LOCATED IN THE INTERCEPTING MISSILE AND SENSES REFLECTED ENERGY FROM THE
TARGET AFTER HAVING BEEN ILLUMINATED FROM THE ENERGY SOURCE WHICH IS5 A SYS-
TEM DEVICE LOCATED EXTERNAL TO THE MISSILE.

3. Passive. IN A PASSIVE SENSING SYSTEM, THE ENERGY SOURCE iS5 NOT A
PORTION OF THE DESIGNED SYSTEM, HOWEVER THE RECEIVER 15 GENERALLY LOCATED
IN THE MISSILE. THUS A STAR-TRACKER MAY BE CONS|DERED AS A PASS{VE SENSING

‘DEVICE JUST AS IS AN INFRA-RED SEEKER LOCKED ONTO A TARGET'S HEAT.

THE MEASUREMENT OF LAND-FIXED TARGET COORDINATES FOR A SURFACE-TO-SUR~
FACE MISSILE MAY HAVE BEEN MEASURED ON THE TIME SCALE MANY YEARS BACK. THE
MEASUREMENT OF COORDINATES FOR AN AIR=-TO=-SURFACE MISSILE MAY BE OPTICAL OR
INFRA-RED DEVICES. THE MEASUREMENT OF THE COORDINATES OF A MOVING TARGET
FOR AN AIR~TO-AIR INTERCEPTOR SAY, MAY BE MUCH MORE RECENT DATA. In ALL
CASES, ACCURACY OF MEASURING DEVICES ARE A FACTOR, WHETHER SURVEY INSTRUMENTS
QR HIGH PRECISION RADAR.

THE DESIGN OF DEVICES TO CULMINATE THE SUFFICIENT PROXIMITY OF THE
INTERCEPTOR AND TARGET COORDINATES |5 THE PRIME OBJECTIVE OF A WEAPON SYSTEM
DESIGN.

FUNDAMENTAL TO THE IDEA OF WEAPON SYSTEM EVALUATION 1S A MEASURE OF
EFFECTIVENESS. ONE FACTOR TO BE CONSIDERED IN SUCH A MEASURE IS THE KILL
PROBABILITY.

THE PROBABILITY OF KILL OF A MISSILE CAN BE EXPRESSED A5 A PROBABILiISTIC
FUNCTION OF THREE FACTORS!:

1. PROBABILITY OF AIRFRAME DELIVERY FOR A DESIGN C.E.P. FOR A PROPERLY
FUNCTIONING MISSILE SYSTEM.

2. RELIABILITY OF MISSILE SYSTEM.

3. PROBABILITY OF KILL BY A MISSILE WHICH IS DELIVERED TO THE DESIGN
C.E.P.

THE SECOND FACTOR CAN BE DETERMINED ONLY AFTER PRODUCTION BEGINS, FOR

IT 1S A FUNCTION OF HARDWARE DESIGN AND FABRICATION AND 1S DETERMINED

EMPIRICALLY, HOWEVER, RELIABILITY (PRE-HARDWARE) FACTORS MAY BE CONS|IDERED
PRIOR TO PRODUCTION.

THE TWO MAIN FACTORS WHICH EFFECT THE RELIABILITY ARE!
1+ THE STATE~OF=THE=ART OF HARDWARE DESIGN AND FABRICATION.

2. THE ADVERSE EFFECTS OF THE ENVIRONMENT.
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THE BLOCK DIAGRAM OF FIGURE 1=Q SHOWS THE RELATION:

ERROR ANALYSIS THROUGH SIMULATION 1S AN AID TO ECONOMICAL SYSTEM REL !~
ABILITY DESIGN. SucH SIMULATION STUDIES WILL ELIMI/NATE THE BAD DESIGN
PRACTICE OF THE PAST OF SPELIFYING EXTREME COMPONENT ACCURACY AND MANUFAC-—
TURING FRECISION, SIMPLY BECAUSE AN ADEQUATE ERROR ANALYS|S5 STUDY HAS NOT
BEEN PERFORMED STATING WHERE PRECISION IS AND IS NOT REQUIRED. THESE
EXTREME ACCURACIES ARE REFLECTED IN EQUIPMENT RELIABILITY.

SIMULATION CAN BE USED TO DETERMINE RELIABILITY REQUIREMENTS OF COMPO~
NENTS. THE MATHEMATICAL MODEL Of A SUBSYSTEM MAY BE SIMULATED AND THE
VALUES OF THE COMPONENT PARAMETERS CHANGED TO STUDY THEIR EFFECTS ON SUB-
SYSTEM INPUT-QUTPUT RELATION.

FOR EXAMPLE THE MATHEMATICAL MODEL MAY TAKE INTO ACCOUNT THE CORRELATION
BETWEEN 'CIRCUIT PERFORMANCE PARAMETERS, {GAIN, BANDWIDTH, POWER OUTPUT ETC.)
AND CAN BE USED WITH ANY FORM OF PROBABILITY DENS!TY FUNCTION FOR THE
"BEHAVIOR STATISTICS" OF THE COMPONENTS (STATISTICAL DISTRIBUTION OF THE
COMPONENT CHARACTERISTICS AS A FUNCTION OF TIME AND ENY{RONMENT).

SIMULATION CAN ALSO BE USED 7O DETERMINE THE RELIABILITY REQUIREMENTS
OF SUBSYSTEMS IN SERIES, PARALLEL, AND SERIES-PARALLEL ARRANGEMENTS.

2
BeLuMAaN anp Drevrus, 9 or THE RAND CORPORATION, USED A DIGITAL COMPUTER
TO SIMULATE THE MATHEMATICAL MODEL OF A PARALLEL REDUNDANT SYSTEM TO DETER=
MINE THE MOST EFFICIENT DUPLICATION PROCEDURE.

L|PP,3O OF THE GENERAL ELECTRIC COMPANY, IN HIS PAPER "TOPOLOGY OF
SWITCHING ELEMENTS vs RELIABILITY" DISPROVES THE BELIEF THAT CIRCUIT COM=
PLEXITY NECESSARILY LESSENS RELIABILITY AND FURTHER DEVELOPS A SIMPLE MATHE=
MATICAL MODEL ADAPTABLE TO THE SOLUTION OF COMPLEX CIRCUITS IN TERMS OF
RELIABILITY.

THE ANALYTICAL OBJECTIVES OF A SYSTEM RELIABILITY PROGRAM ARE TWO=FOLD:

1. THE SPECIFIED SYSTEM RELIABILITY REQUIREMENTS MUST BE ASSIGNED TO
THE SUBSYSTEMS AND COMPONENTS TC ASSURE ADEQUATE SYSTEM DES iGN,

29 By PERMISSION FROM Dynamic PROGRAMMING AND RELIABILITY OF MuLTicoM=
PONENT DEVICES BY R. BELLMAN AND S, DREYFUS. COPYRIGHTED 1950,
THE JOURNAL OF THE OPERATIONS SOCIETY OF AMERICA, VoOL. 6, Nr 2,
Mar-Arr 1958.

30 gy PERMISSI0N FROM THE TOPOLOGY of SwiTCHING ELEMENTS VS RELIABILITY
By J. P. Lipr. CopYriGHTED 1957. I[NSTITUTE of RADIO ENGINEERS,

JunE 1957.
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2. As COMPONENT AND SUBSYSTEM DESIGN DATA ARE MADE AVA[LABLE THROUGH-
OUT THE DEVELOPMENT AND TESTING PROGRAM FOR VARIOUS ENVIRONMENTAL CONDITIONS,
THIS INFORMATION MUST BE UTILIZED IN PREDICTING THE SYSTEM RELIABILITY.
YouteHerF, 3! sTates: "IN PREDICTING SYSTEM RELIABILITY, IT IS NECESSARY TO
DETERMINE BOTH COMPONENT RELIABILITY RELAT)ONSHIPS AND THE {NDIVIDUAL COMPO-
NENT FAILURE PROBABILITIES. SEVERAL STATISTICAL METHODS FOR DETERMINING
COMPONENT RELIABILITY ARE PRESENTED; HOWEVER, THE EXACT METHODOLOGY MUST BE
TAILORED TO THE SPECIFIC SYSTEM AND DEVELOPMENT PROGRAM. SYSTEM RELIABILITY
CAN BE PREDICTED BY UTILIZING COMPONENT RELIABILITY DATA TOGETHER WiTH AN
ADEQUATE ANALYSIS OF COMPONENT AND SUBSYSTEM REL{ABILITY RELATIONSHIPS."

STEVENS, 32 N HIS PAPER, "A SEQUENTIAL TesT For CoMPARING .COMPONENT
REtiaBILITiES" STATES: "{F A DIGITAL COMPUTER IS AVAILABLE, HOWEVER, IT 15
FEASIBLE TO SIMULATE THE TEST PROCESS A LARGE NUMBER OF TIMES BY A 'MONTE
CARLO' METHOD, THUS OBTAINING ANY INFORMATION REQUIRED ABOUT THE MODE OF
OPERATION OF THE TESTS."

A PROGRAM REQUIRING THE CONTRACTING AGENCY (GOVERNMENT) TO EVALUATE A
WEAPON SYSTEM CONCURRENTLY WITH THE DEVELOPING CONTRACTOR 15 A NATURAL STEP
IN THE UNIFIED NATIONAL EFFORT TO MAINTAIN A LEAD IN THE CONQUEST OF EFFECe
TIVE WEAPON SYSTEM3 AND SPACE TECHNOLOGY., THE ABOVE HYPOTHESIS 1S A CON=
SEQUENCE OF THE EVER INCREASING COMPLEXITY OF THE SYSTEMS WITH THE RESULTING
EXPENSIVE AND TIME CONSUMING REQUIREMENTS FOR ENGINEERING EVALUATION.
ACCEPTING AS INEVITABLE THE NONFEASIBILITY OF TWO SUCCESS|VE INDEPENDENT
EVALUATION PROGRAMS FOR OUR ADVANCED WEAPON SYSTEMS THIS SECTION DISCUSSES
SOME PERTINENT ASPECTS OF A CONCURRENT FLIGHT EVALUATION PROGRAM.

THE TASK OF EVALUATING A MISSILE SYSTEM BASED PRIMARILY ON DATA
OBTAINED FROM THE CONTRACTOR OR CONTRACTOR-GOVERNMENT FIRING EXPERIMENTS
REQUIRES A WELL PLANNED PROGRAM UTILIZING TO THE FULLEST EXTENT AUTOMATION
CONCEPTS. AT A VERY EARLY STAGE OF SYSTEM DEVELOPMENT A SCIENTIFIC TEAM
SHOULD DEVELOP THE SYSTEM MATHEMATICAL MODEL. THIS MATHEMAT | CAL MODEL SHOULD
CONTAIN THE SYSTEM VARIJABLES WHICH CAN AND WILL .BE MEASURED IN SUBSEQUENT
TESTS IN THE LABORATORY AND ON THE RANGE.

PRESENT RANGE INSTRUMENTATION SYSTEM AND DATA REDUCTION DESCRIBES THE
MISSILE FLIGHT AND INTERNAL PARAMETER BEHAVIOR BUT DOES NOT EVALUATE IT.
TH1S PART CONSIDERS THE PROBLEM QOF EVALUATING MISSILE FLIGHT TESTS BY A

31

By PERMISSION FROM STATISTicAL ASPECTS OF RELIABILITY IN SYSTEMS
DevELOPMENT BY J. S. YOUTCHEFF. COPYR!IGHTED 1957. TRANSACTIONS
ON RELtABiILITY aND QuaLiTY ConTROL, Nov 1957.

32 By PERMISSI10N FROM A SEQUENTIAL TEST FOR COMPARING CoMPONENT |
RELIABILITIES 8Y C. F. STEVENS. COPYR!GHTED 1957. INSTITUTE oF
RapIo ENGINEERS TRANSACTIONS ON RELFABILITY AND QuaLiTy ConTrOL,
NoveEMBER .
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COMBINATION OF A STUDY OF THE PHYSICS OF THE SYSTEM AND EXPERIMENTAL TEST
DATA, THE ASSUMPTION 1S MADE THAT A COMPLEX WEAPON SYSTEM CANNOT BE FULLY
UNDERSTOOD UNTIL A COMPLETE MATHEMATICAL FORMULATION OF THE PHYSICALLY
REALIZED SYSTEM HAS BEEN ACCOMPLISHED AND THE RESULTING EQUATIONS SOLVED A
SUFFICIENT NUMBER OF TIMES TO THOROUGHLY DEPICT THE SYSTEM BEHAVIOR OVER THE
AREAS OF INTEREST.

IN CASES WHERE THt EQUATIONS.ARE TQO DfFFICULT TO OBTAIN THE SUBSYSTEM
MAY BE TIED INTO THE PRE=-FLIGHT SIMULATION. THESE PRE~LAUNCH SIMULATED
FLIGHTS WOULD MAKE XNOWN THE EXPECTED BEHAVIOR OF MANY OF THE SYSTEM VARI-
ABLES DURING THE LIVE=FLIGHT, THUS ENABLING A BETTER UNDERSTANDING OF THE
ACTUAL FLIGHT AS WELL AS SERVING AS A GUIDE IN DETERMINING WHAT THE FLIGHT
SHALL TEST. AFTER THE SIMULATED FLIGHT OF THE SUBSYSTEM IN THE LABORATORY
IS COMPLETED THE MUCH MORE EXPENSIVE FLIGHT TEST OF THE SUBSYSTEM MAY BE
PERF ORMED . IN THIS MANNER A MINIMUM OF INCREASINGLY-DEMANDED RANGE TIME
IS CONSUMED THROUGHOUT THE DEVELOPMENT OF THE SYSTEM.

THE PRIMARY OBJECTIVE OF THE EVALUATION OF THE MISSILE TEST FIRING DATA
{S THE MEASUREMENT AND [NTERPRETATION OF EXTERNAL PERFORMANCE CAPABILITIES
(RANGE, VELOCITIES, MANEUVER CAPABILITIES, ACCURACIES) AS DETERMINED BY THE .
BAS|C SYSTEM PARAMETERS SUCH AS GAIN SETTINGS, AIRFRAME CONFIGURATION CHANGE,
THRUST, ETC. CONSEQUENTLY, IT 15 NECESSARY TO MEASURE MANY OF THE INTERNAL
MISSILE FUNCTIONS DURING FLIGHT FOR PURPOSES OF FAILURE DIAGNOSIS AS WELL
AS ANALYS!S OF FACTORS GOVERNING VARIATION IN PERFORMANCE.

THE IN-FLIGHT BEHAVIOR OF THE ELEMENT OR SUBSYSTEM UNDER INVESTIGATION
1$ REPRODUCED BY POST SIMULATION; THUS IDENTIFYING (TS PARAMETER CONFIGURA~-
TIoN. By THIS MEANS CONS|DERABLE INSIGHT INTO CAUSES AND EFFECTS OF IN=-
FLIGHT FAILURES CAN BE OBTAINED AS WELL AS A CLAhIFICATION OF THE RELATION
BETWEEN INTERNAL PARAMETERS AND OVERALL PERFORMANCE.

IN CRDER TO CHECK THE VALIDITY OF THE SYSTEM OF EQUATIONS, A CRITERION
MUST BE ESTABLISHED TO MEASURE THE FIGURE OF MERIT OF THE SIMULATION. THE
DRIVING FUNCTIQNS TC THE PQST SIMULATED-FLIGHT SHOULD BE TELEMETERED PLAY
BACK DATA, THE SIMULATED FLIGHT IS THEN CONDUCTED IN A MANNER SIMILAR TO
THE ACTUAL TEST WHOSE RESULT3 ARE BEING ANALYZED. IDEALLY, FOR THE SAME
INPUTS TO THE SIMULATED FLIGHTS A5 FOR THE REAL FLIGHT, [T 1S DESIRED TO
OBTAIN THE SAME OUTPUT AS A FUNCTION OF TIME. PRACTICALLY THIS CANNOT BE
ACHIEVED AND IT 1S NECESSARY TO DEVELOP THE ABOVE CRITERIA. THESE EVALUA-
TION CRITERIA SHOULD BE MECHANIZED ON COMPUTERS 50 THAT FLIGHT EVALUATION
IS SPEEDED UP IN ORDER TO INFLUENCE THE SUCCEEDING FLIGHT TEST. GREAT
SIMILARITY BETWEEN THE SIMULATED FLIGHT AND THE ACTUAL FLIGHT VARIABLES
INDICATES THAT THE ACTUAL FLIGHT TEST VEHICLE PERFORMED (N A MANNER ESSEN-
TIALLY SIMILAR TO A UNIT WITH TYPICAL OR NOMINAL RESPONSE. LIKEWISE, WIDE
DIFFERENCES BETWEEN THE SIMULATED ARD ACTUAL FLIGHT TEND TO INDICATE THAT
THE UNIT HAD FUNCTIONED IN SOME |RREGULAR MANNER AND TC PROVIDE AN ESTIMATE-
OF THE NATURE AND MAGNITUDE OF THE‘IRREGULARITY, FOR EXAMPLE, FROM AN OBSER-
VATION OF THE TELEMETERED DATA ALONE, A SPURIQUS LARGE TRANSI{ENT IN THE
TELEMETRY LINK MAY LOOK THE SAME AS A TRANSIENT WHICH OCCURRED IN THE MISSILE
COMMAND L INK.
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FAILURES MAY BE LOCATED DEPENDING ON A MANNER OF CIRCUMSTANCES SOME OF
WHICH ARE: WHETHER THE ABNORMAL BEHAVIOR CAN BE REPRODUCED ON THE POST SIMU-
LATED FLIGHTS; WHETHER THE RESPONSE CHARACTERISTICS OF THE SYSTEM FOR VARIOUS
STATES OF THE INTERNAL SYSTEM PARAMETERS CAN BE SHOWN TO BE UNJQUE; WHETHER
THE DEGREE TO WHICH THE EFFECTS OF THE RESPONSES OF INDIVIDUAL ELEMENTS OR
STAGES CAN BE ISOLATED,

PRE=FLIGHT S{MULATIONS UTILIZING FLIGHT-TABLES SYSTEM HARDWARE, ETC.,
COULD REVEAL THE EFFECTS OF REFERENCE VOLTAGE LEVEL VARIATIONS, BOTTOMING
OF INSTRUMENTS, TOTAL COMPONENT MALFUNCTION, PARAMETER GAIN SETTING DEVIA~-
TIONS, UNDER SIMULATED DYNAMIC CONDITIONS. ACTUAL FLIGHTS ARE FAR TOO
EXPENSIVE TO PERMIT INVESTIGATING THESE MANY POSSIBLE INTERNAL DEVJATIONS.

AS A CONSEQUENCE THE LIVE=FLIGHT TESTS ARE "IDEAL SET-UP" EXPERIMENTS, FOR
EXAMPLE, IN THE PRESENT LENGTHY PRE~LAUNCH CHECK=OQUT TIME,. ALL SYSTEM GAIN
SETTINGS ARE PAINSTAKINGLY ADJUSTED TO GIVE OPTIMUM PERFORMANCE.

THE MOST ECONOMICAL EVALUATION PROGRAM CAN BE EFFECTED THROUGH SI1MU-
LATION BY DETERMINING THE FACTORS WHICH GIVE RISE TO THE STATISTICAL DIS-
TRIBUTION OF PERFORMANCE CHARACTERISTICS, ESTIMATING THE MEAN VALUES AND
DISPERSIONS, AND VERIFYING CONCLUSIONS BY MEANS OF A MIN|MUM NUMBER OFfF )
ACTUAL FIRING TESTS, BY INJECTING SIGNALS HAVING “TypicaL"™ NoISE SPECTRUMS;
AND BY A CAREFUL ANALYSIS OF FACTORS LEADING TO DISPERSIONS OF THE SYSTEM
VAR|ABLES, THE STATISTICS OF SYSTEM PERFORMANCE MAY BE INFERRED.

"ALTHOUGH THERE ARE MANY MANY MORE DEGREES OF FREEDOM IN. THE ACTUAL
SYSTEM THAN IN THE MATHEMAT)ICAL MODEL, PRE«FL]GHT STUDY WOULD SELECT THE
CRITICAL AND SIGNIFICANT SYSTEM VARIABLES TQ BE MONITORED DURING THE FLIGHT.
SINCE THE MATHEMATICAL MODEL OF THE PHYSICALLY REAL|ZED SYSTEM 1S ONLY LiMI~-
TED BY THE ACCURACY OF THE EXPERIMENTAL DATA, THE ABOVE STUDY WOULD IND1=-
CATE ACCURACY REQUIREMENTS OF THE MEASURING DEVICES.

COMPUTERS ARE THE BASIC TODLS FOR IMPLEMENTING IN A TIMELY MANNER THE
PROPOSED EVALUATION PROGRAM. THE PRESENT STATE=OF=THE-ART OF SIMULATION
USING HIGH SPEED DIGITAL AND ANALOG MACHINES NECESSITATES A SIMULATION SET=
UP FOR EACH ACTIVE MISSILE UNDER DEVELOPMENT. THE EXTENSIVE PRE-LAUNCH AND
POST~LAUNCH SIMULATI|ON OF A PARTICULAR MISSILE SYSTEM WOULD REQUIRE CON=
TINUOUS SIMULATED FLIGHTS BETWEEN FIRINGS TO MOST EFFECTIVELY UTILIZE THE
FLIGHT TEST DATA.

Y r:r::~s<:!_us|or.'r:l ONE MAY CONSIDER ANY COMPLEX SYSTEM AS A COLLECTION OF
K1, K2 Ko ... x 10" INDIVIDUAL COMPCONENTS. THUS THE MOST SIMPLE ELECTRC-
MECHANICAL SYSTEM WOULD HAYE 10° = 1 coMPONENTS. CONSIDER THE SYSTEM AS
BEING A RESISTOR. DEPENDING UPON THE DEGREE OF APPROXI[MATICN DESIRED, ONE
COULD DEVELOP THE MATHEMATICAL MODEL AND A SIMULATOR TO SOLVE THE EQUATIONS.
AS A FIRST APPROXIMATION, LABORATORY £XPERIMENTS WOULD YIELD A LINEAR RELA-
TION BETWEEN THE VOLTAGE ACROSS THE RESISTOR E AND THE CURRENT ), THAT IS:

£ = Ri. (1-3)
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ONE COULD SOLVE THE ABOVE EXPRESSION BY MEANS QOF PAPER, PENCIL AND HIS
HEAD AS A COMPUTER, OR ANY OTHER SCALED LINEAR DEVICE WHICH WOULD BE THE
ANALOG OF THE PHYSICAL RESISTOR. :

IF ONE WANTED A MORE REALISTiC MATHEMATICAL MODEL THE EFFECT OF TEMPERA-
TURE COULD BE CONSIDERED. THE RESISTANCE OF A CONDUCTOR DEPENDS UPON THE
TEMPERATURE AS WELL AS THE MATERIAL AND FORM, THE FACTORS WHICH DETERMINE THE
VALUE OF THE PARAMETER R ABOVE. TO A FIRST APPROXIMATION, THE CHANGE IN
RESISTANCE PRODUCED BY A VARIATION IN TEMPERATURE 1S PROPORTIONAL TO THE
TEMPERATURE TEMPERATURE INCREMENT, PROVIDED THIS INCREMENT 1S NOT TOO LARGE.
HENCE THE RELATION BETWEEN THE RESISTANCES Ry AND RTE OF A CONDUCTOR AT TWO
TEMPERATURES Ty AND Tp, RESPECTIVELY, (S: 1

Rr, =R, [0+ & (Tp - 1)) (1)

WHERE K 1S THE FRACTIONAL CHANGE iIN RESISTANGE PER DEGREE OF TEMPERATURE
RISE, AND |S TERMED THE TEMPERATURE COEFFICIENT OF RESISTANCE (VALUES
DEPENDING UPON THE TYPE GOF MATERIAL).

ONCE THE VALUES OF K AND Ry HAVE BEEN DETERMINED FOR A GIVEN MATERIAL,
Ea. (1-%) can BE uTiLi1zED IN Ea. {1-3)

e=rp fewm-m] i (1-5)

THE soLuTion ofF EQ. (1-5) 1S Now MORE cOMPLICATED THAN Ea. (1-3). If
THE EFFECTS OF HUMIDITY H ARE CONSIDERED AND THE LUMPED PARAMETER EXPRESSION
oF E@. {1~3) 1S REPLACED BY A DISTRIBUTED PARAMETER ASSUMPTION, THAT 1S THE
[NDUCTIVE AND CAPACITIVE EFFECTS OF THE WIRE WINDINGS ARE CONSIDERED AS A
FUNCTION OF THE FREQUENCY & OF £, ONE OBTAINS:

E=R (W, T, H...) i. ’ (1-6)

JF ONE NEXT ATTEMPTS TO STREAMLINE THE TESTING OPERATION, EQuation {1-6)
COULD BE MECHANIZED ON A COMPUTER AND THE PHYSICAL COMPONENT SUBJECTED TO
ENV IRONMENTAL TESTS. THE OUTPUTS COULD BE COMPARED ON A REAL TIME BASIS AS
SHOWN IN Fig. 1-70.

ONE OF THE MAJOR PROBLEMS OF SCIENTIFICALLY DESIGNING & COMPLEX SYSTEM
15 TO OBTAIN THE MATHEMATICAL MODEL OF THE PHYSICALLY REALIZED SYSTEM. SUCH
A REALISTIC MODEL WOULD REFLECT THE STOCHASTIC NATURE OF THE PHYSICAL DEVICE.
THE OVERALL COMPLEX SYSTEM MODELING SCHEME 15 SHOWN IN FiG. 1-~11.

CONCEDING TO THE DESIRABILITY OF REAL TIME FLIGHT ANALYSIS WITH ITS
REQUISITE MATHEMATICAL MODELS, ONE LOGICALLY NEXT CONSIDERS HOW TO UTILIZE
THE RESULTS OF THE REAL-TIME ANALYS5I15 TC INFLUENCE (FEED-BACK APPROACH) THE
BEHAVIOR OF THE SYSTEM., THUS THROUGH REAL=TIME ANALYSIS CONCEPTS, ONE I3
DIRECTED TOWARDS THE DESIGN OF MORE SOPHISTICATED SYSTEMS. THESE SOPHISTI=
CATED SYSTEMS ARE UNDER STUDY BY THE AIR FORCE, NATIOMAL AERONAUTICS AND

o
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Space AGENCY, M.1.T., SPERRY, MINNEAPOLIS HONEYWELL, AND MANY OTHER COMPAN!ES
ARD UNSVERSITIES UNDER THE HEADING OF "ADAPTIVE FLiGHT CONTROL SYsTEMs.”

FOR FURTHER LITERATURE ON THESE FUTURE SOPHISTICATED SYSTEMS ONE IS REFERRED
TO THE FOLLOW!NG REFERENCES:

DesiaN oF MoperL-ReFerReNceE ADAPTIVE ConTROL SysTEMS FOR AIRCRAFT,
H. P. WHITAKER; J. YamroN, A Kezer, SeEPT 1958; Report R-164.

A STupY To DeTERMINE AN AuTOMATiC FLIGHT ConNTROL CONFIGURATEION
To ProviDE A STABILITY AUGMENTATION CaPaBiLITY For A HigH-
PERFORMANCE SUPERSONIC AIRCRAFT, MINNEAPOLIS-HONEYWELL
REGULATOR Co., AERONAUTICAL Divisjon, May 1958; W.A.D.C.
TecHnicaL REPORT 57-349.

FiNaL TecunicaL REPORT FEASIBILITY STuny AuToMATIC OPTIMIZING

SrasiL1zaTIOoN SrsTEM; PART 1, SPERRY Grroscore Co., WSDC
Tecunical ReporT 58-243 Astra DocuMent Nk AD 155576.
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PART t1
GENERAL ANGULAR" R'ELATI'ONS_HI'PS

THE ANGULAR RELATIONSHIPS BETWEEN VARIOUS REFERENCE FRAMES ASSOCIATED
WITH WEAPON SYSTEMS 15 ONE OF THE aas:c REQUIRED STUDIES NECESSARY IN
svsrtﬁ”s?n1nzsus AND SYSTEM ANALYSIS, FOR, (N THE DESIGN OF A WEAPON SYSTEM
WHEREIN A GUIDED MiSSILE i5 TQ BE AUTOMATICALLY VECTORED TO A TARGET, IN-
NUMERABLE VECTOR RESOLUTIONS ARE REQUIRED, SECTIONS TWO THROUGH EI1GHT S AN
ATTEMPT TO DERIVE AND COMPLY THE BULK OF THE COORDINATE TRANSFORMATIONS
MECESSARY TO RESOLVE TRE DYNAMIC AND KINEMATIC EQUATIONS TO EFFECT TARGET

INTERCEPT | ON FOR A NUMBER OF CASES

Fon EXAMPLE, A DoPPLER-INERTIAL GUIDANCE SYSTEM REQUIRES TRANSFORMA=
TIONS oF DoPpPLER VELOCITY ALONG CARRIER AXES TO COMPONENTS OF DOPPLER
VELOCITY ALONG PLATFORM AXES., ANGULAR RELATIONS ARE NECESSARY FOR THE
AL IGNMENT OF SLAVED PLATFORMS TO A MASTER PLATFORM FOR AIR- LAUNCHED'BALLISTIC
MISSILES, AND FOR THE STABILIZATION OF RADAR, CAMERAS, "STAR~ TRACKER, OR
GIMBALLED ENGI!NE MOUNTS, KNOWLEDGE OF THE MiISSILE ATTITUDE (HEADING, ELEVA=
TION ANGLE, OR OTHIR ANGLES DEPENDING UPON THE TYPE OF FLIGHTPATH CONTROL
USED) CAN BE OBTAINED FROM GYROS AND STABLE PLATFORMS., FURTHERMORE, IN
SYSTEM SIMULATION STUDIES, VARIOUS TYPES OF COORDINATE TRANSFORMATIONS ARE
NECESSARY, SOME OF WHICH IN ACTUAL FLIGHT ARE ACHIEVED PHYSICALLY,

CONSEQUENTLY, ONCE A WEAPON SYSTEM GUIDANCE AND CONTROL PHILOSOPHY HAS
BEEN ESTABLISHED, THE DIRECTION COSINE MATRICES OF SECTIONS TWC THROUGH EJGHT
AND THE METHODS Of OBTAINING THESE DIRECTION COSINES SHOULD BE AN INVALUABLE
EXPEDIENT IN THE ACTUAL MECHAN|ZATION OF THESE CONCEPTS INTO A PHYSICAL
SYSTEM,

DIRECTION COSiNE MATRICES AS FUNCTIONS
OF FULER ANGLES (SUCCESSIVE AND REPETITIVE)

ONE REFERENCE FRAME MAY BE UNIQUELY ORIENTED WITH RESPECT TO A SECOND
REFERENGE FRAME THROUGH THREE ORDERED ANGLES, THE EULER ANGLES FREQUENTLY
ENCOUNTERED ARE OF TWO TYFES:

(1) REPETITIVE EULER ANGLES AS USED IN CLASSICAL MECHANICS IN WHICH
ONE OF THE THREE ANGULAR ROTATIONS |S REPEATED AND A LINE OF NODES IS
ESTABL!SHED, E. G. THE THREE ORDERED ROTATIONS MIGHT BE YAW, ROLL, YAW,

(2) Successive EULER ANGLES IN WHICH NONE OF THE ROTATIONS ARE
REPEATED, E, @, YAW, PITCH AND ROLL, THE FIRST ROTAT{ON IS ABOUT AN AXIS
OF THE ONE { INITIAL) REFERENCE FRAME, THE THIRD OF THE ORDERED ROTATIONS (S
ABOUT AN AXIS OF THE OTHER (FINAL)} REFERENCE FRAME, AND THE SECOND ROTATION
1S ABOUT AN AXIS NORMAL TO THE FIRST AND THIRD ROTATION AXES,

THE ROLL AX1S AS CONCEIVED IN THIS REPORT 1S THE Fj OR Rq; (ROLL axis
AFTER ;TH ROTATION VECTOR). FOR EXAMPLE IF THE FIRST ROTATION 1S A ROLL,
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THEN THE ROLL AX!S 1§ F], IF THE FiRST ROTAT [ON 15 E{THER PITCH OR YAW AND
THE SECOND ROTATION ROLL, THEN R11 1S THE ROLL AX1S, THAT IS, THE ROLL AXIS
AFTER THE FIRST 'ROTATION., |F THE LAST ROTATION IS ROLL THEN THE ROLL AXIS
s R12 = R, (FINAL POSITION OF ROLL AXIS)., SIMILAR CONSIDERATIONS HOLD FOR
THE PITCH AXIS AND YAW AXIS,

THUS' IT 15 S5EEN THAT THE ANGLES @ {Rotl), © (PiTcH), ¥ (vaw) RESPECTIVE-
LY ARE MEASURED IN "VARIABLE PLANES" PERPENDICULAR TO THEIR AXES OF ROTATION,
WHERE THE AXIS OF ROTATION IS A FUNCTION OF THE EULER SEQUENCE USED,

GIMBALLED BOOY (E. G. GYROS, STABLE PLATFORMS, AND RADAR ANTENNAS} PiCK=
OFF ANGLES ARE OF THE SUCCESSIVE TYPE AND CONSEQUENTLY EXTENSIVELY USED IN
MISSILE EQUATIONS OF MOTION, THE EULER ANGLES.USED IN THIS PAPER ARE TO BE
UNDERSTOOD TO BE SUCCESSIVE TYPE EULER ANGLES UNLESS EXPLICITLY STATED
OTHERWI SE, ' N

CONSIDER THE ORIENTnTION OF A UNIT VECTOR R1 IN THE Fl REFERENCE FRAME,
As SHOWN IN SECTION ONE, THE THREE ANGLES THAT EI MAKES W!TH THE r1, FE AND
F3 AXES RESPECTIVELY ARE GIVEN BY X 1, ﬂ?} AND XI- THE DIRECTION COSINE
BETWEEN THE P1 AND r} UNIT VECTOR IS COS aq Rl' Fl' IN TERMS oF FULER
ANGLES (FOR EXAMPLE RADAR COORDINATES= AZ!MUTH ANGLE " AND ELEVATION ANGLE ©)
AS SHOWN BELOW!:

A
7
Fic, 2.1. DIRECTION ANGLES BETWEEN

Rj AND FT Frames,

THE RELAT | R
TONSHIP BETWEEN °<1 ¥ aND © 15 cos A, = cos ¥ tos 0. IT 15 To BE

NOTED THAT THIS 1S A4q = F1 FOR THE OCRDERED EULER SEQUENCE YAu, PITCH, ROLL,

AND ALSO FOR THE szausncs P{TCH, YAW AND ROLL AS SHOWN IN Fiaures 2-1 anp 2.2,

THE TOTAL NUMBER OF ORDERED SETS OR SEQUENCES OF EULER ANGLES 1S GIVEN BY
THE PERMUTATIONS OF THREE ANGLES TAKEN THREE AT A-TIME, OR S1X. THE ANGLES
USED ARE ¢, €, iy , WHERE THE CORRESPONDENCE 1S5 SUCH THAT Q, ©, ¥ ARE ALWAYS
ASSOCIAT I} R, R.

IATED WiTH ROTATIONS ABOUT THE Ry, Rp,, R3J {v=1, 2, 3) vecrors,
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RESPECTIVELY. THE SEQUENCES OF ROTATIONS ARE

vy O @
v $ ©
¢, l]/, 6
K : ¢.r o, 2
o, 8 y
6, v, #

" Tue EULER ANGLES REPRESENT AN ORDERED TRIPLE OF NUMBERS, THUS FOR A
UNIQUE ORIENTATION OF ONE FRAME(R, WITH RESPECT TO A SECOND FRAME FI) THE
ANGLES ¥, ©, aND @ For THE seauence (¥, Oy, $1) wiLL HAVE DIFFERENT
NUMERICAL VALUES THAN THE ANGLES ~ o3 ' oy AND -02 FOR THE sgqu'ENCE'('wz’%,QQ)a
THIS 15 SHOWN - IN FIGURE 2-2 WHERE THE YAW ANGLE AND ELEVATION ANGLES FOR THE
FIRST SEQUENCE REPRESENT RESPECTIVELY THE NORMAL PROJECTION OF THE Ry AXIS IN

THE ?1,'??2 PLANE {HEADING ANGLE FOR ZERO ANGLE OF ATTACK) AND THE PITCH ANGLE
IS THE ELEVATION PLANE PITCH ANGLE, FOR THE SECOND SEQUENCE Yo, ﬁg, 02),

Yo 1S NOT HEADING ANGLE AND 85 s PLANE OF SYMMETRY PITCH ANGLE IF A
SYMMETR1CAL AIRFRAME WERE' ASSUMED WITH R{ LONGITUDINAL AXIS AND Ry LEFT WING
AXIS. THUS, UNLESS AN EULER SEQUENCE 1S SPECIFIED, THE THREE COMMONLY DENOTED
ANGLES YAW, PITCH, AND ROLL ARE WITHOUT SPECIFIC MEANING,

. THE TRANSFORMATION MATRIX M, ASSOCIATED WITH THE ANGLE WiLL BE REFERRED
TO AS THE YAW=MATRIX. THE M, MATRIX OBTAINED IS '

3 cos 'Y sINY O F_1
Rl = - siN"ycos ¥ O o
/3 0 0 1 ' Fs
Ry = Myl Y)F (2.1)

THE MATRIX ASSOCIATED WITH THE ANGLE © WiLlL BE REFERRED TO AS THE
PITCH MATRIX M : . -

pe
Ry ' cose 0 -singl .. ?.I'
F?J _ SIN® 0 coso | - ?3

R = M (O)fF, _ (2.2)
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SIMILARLY, THE MATRIX ASSOCIATED WiTH THE EULER ANGLE @ wiLL BE
REFERRED TO AS THE BOLL MATRIX Mp.
. . B .

—k

0 0

0 cosﬁ sing

0 -sINp . cosP

(2.3)
Rj = Mr(B)F, |

THE DIRECTION COSINE MATRIX FOR THE EULER sEquence (W, ©, @) wHEN

THE.ﬁi FRAME 1S ROTATED WITH RESPECT TO THE ?i*FR&ME WILL NOW BE OBTAINED,

THE FIRST ANGULAR ROTATION 1S ABOUT 'R':,) =",.-—3 BY EQUATION (2.1).
i1 o= My (YR

cos ¢ siny O
= -SIN ¥ cos¥ O

0 o 1

(2.4)

THE SECOND ANGULAR ROTATION 15 A PITCH ABOUT R21° By EQUATION (2.2)'

12 = MP[OJEJI
12 cos® 0 -SINQ- 11
Rez | ° 1 °/ | Tet
®ap SING 0 cos@ 331 - (2.5)

THE THIRD ANGULAR ROTATION IS A ROLL ABOUT R1 AND 15 GIVEN BY
EquaTioN {2,3). :

Ri = My(B)%;p



12
cosd sm¢ Roo
-smﬁ cosf 2 (2.6)

BY €QuaTioON (2 1}), (2 5), ano (2.6) _
Rj = MgMpM,Fj. (2.7)

IN TERMS OF THE ANGLES, EQUATION (2,7) BECOMES

0 0 ose 0 =S 1N 65 SiN
__ |0 cosf  sung 0 1 0 | -sIN cos
O -sinf cospf/ IN@ O  coso o 0 (2.8)
,
MULTIPLYING THE ABOVE MATRICES GIVES THE MATRIX FOR THE SEQUENCE
(¢, 8, @) as _
R\ fcosecos P | cos@ SINY. -51NO 2
R |=( sinPs1nG pecosPsing ) (sin WsINGsing + cosﬁcoéup) sinfcos Fp

Ry cosPsinecosy + siNfsINY ) (cbsﬁsm%,m& - sinfcos ¥ JcosfeosOl\ F3 | (2.9)

THe sEqueENcE (¥, B, ©) 1s civen As (see Fia. 2.2) Ry=M,{y JF,

11 cos-¥siNn g O [F,

Ro = -sIN‘pcos ¢ V|| Fp

-§3] 0 o .1 ?3 (2.10)
Fia = Ma(B)R{y

Rio 1 0 o\ [®&,\

Roy = 0 cosp  sing| | Ry

R3t) 0 -sing  cosp Rl - (2.1}
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Or

E; M (O)MR(¢)M (w e

(cos@cos-¥- - smgsmﬁsm'ﬂ) (cosesm#" + smosmﬁcosﬂf )- smgcosQ\

F
= -cos P sm.tp ' : ' cos P cos¥ sin @ Fo
SINGCOS ¥ + cosOsmﬁsmL’l) (smesmw cosOS|N¢cos¢') cosecosP / F3

WHICH CORRESPONDS TO THE SEQUENCE ¥, @, O,

[N A SIM{LAR MANNER, ALL SiX TRANSFORMATION MATRICES ARE OBTAINED,

THE REMAINING FOUR SEQUENCES ARE CBTAINED FROM THE FOLLOWING MATRIX

PRODUCTS,

(@ v, 0): R
(B, 6, ¥ ): ®
(6, .8 ): 7
(o;ﬁ, v )R

(6) My( ¥ ) Mg () T,

My (¥ Mo(0) Ma(P) 7

(BIMe( ¥ ) Mo(0) 7
My (¥ WMr(B) M.(8) F;

THESE SIX SEQUENCES ARE DEPICTED IN FIGURES 3-1 THROUGH 3-6 WITH THE

CORRESPONDING DIRECTION COSINE MATRICES, IT IS TO BE NOTED THAT IN ALL OF

THE FOLLOWING F}GURES THE FRAME E} {5 ROTATED WITH RESPECT 70 F' THROUGH
POSITIVE ANGLES, THUS, WHEN PARTICULAR VECTORS ARE SUBSTITUTED INTO' THE
EQUATICONS, THE FRAME WHICH IS BEING_ORIENTED THRQUGH THE EULER ANGLES WITH
RESPECT TO A SECOND FRAME SHOULD BE PUT IN THE LEFT HAND S5IDE OF THE EQUATION,
IF NOT; ROWS AND COLUMNS OF THE DIRECTION COSINE MATRICES SHOULD BE INTER=-
CHANGED, AS WELL AS THE SIGNS OF THE EULER ANGLES CHANGED, SINCE REVERSING THE
TRANSFORMAT |ONS (GOtNG FROM THE RT FRAME BACKWARDS TO THE F¢ FRAME THROUGH THE

SAME MAGNITUDES OF ANGLES) REQUIRES NEGATIVE ANGLES,

TRANSFORMATIONS WITH THE USE OF

EUCER ANGLES AND THEIR RATES

IN THE LAST SECTION, THE DIRECTION COSINES OF EQUATION 1-14 wErRe oBTAINED

AS TRIGONOMETRIC FUNCTIONS OF THE EULER ANGLES, WHEN THIS MEANS IS EMPLOYED

TO OBTAIN THE DIRECTION COSINES, THE EULER ANGLES MUST BE GENERATED. IN THIS
SECTION THE METHOD FOR GENERATING THE ANGLES 1S GIVEN : ALSO IN THE NEXT .
SECTION, A SECOND METHOP FOR FINDING THESE DIRECTION COSINES DIRECTLY 8
DESCRIBED, THIS LATTER METHOD REQUIRES THE SOLUTION OF A S3YSTEM OF DIFFERENT{AL
EQUATIONS [INVOLVING THE DIRECTION COSINES AND THE!R RESPECTIVE TIME DERIVATIVES
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AND THE COMPONENTS OF ANGULAR VELOCITIES OF THE TWO REFERENCE FRAMES ABOUT
THEIR RESPECTIVE AXES. ALTHOUGH TH1S SYSTEM CONSISTS OF NINE FIRST ORDER
DIFFERENTIAL EQUATIONS, ONLY THREE ARE INDEPENDENT. a
" THE DIF'FERENT'I'AL'"EQLIATIONS WHOSE SOLUTIONS GIVE THE FULER ANGLES FOR
THE FORMER METHOD WILL BE OBTAINED FIRST, CONSIDER THE EULER SEQUENCE ) ,
e, ﬁ WHICH ORIENTS THE Rj FRAME WiTH RESPECT TO THE F; FRAME, THE {NERTIAL
ANGULAR VELOCITY OF .THE 'Fr, FRAME IS EQUAL TO THE lNERTIAl. ANGULAR VELOCITY
OF THE T; FRAME PLUS THE RELATIVE ANGULAR VELOCITY OF THE R} FRAME WITH

RESPECT TO THE F" FRAME, OR IN EQUATION FORM:

Wy = Wit Wpf (3.1)

IN COMPONENT FORM

+ng3 + OR ;?}E' (3.2)

WHERE Rpq 1S FOUND FROM EquaTion (2.4) To BE

Rpp = - s’mqb Fi+ cosl!JFe (3.3)

Usine (3. 3) wiTh (3.2)

+ (QF + o coscb)?'g

+ (RF +IL)F3 + éﬁ] (B'h)

DoTTiNg {3.4) with Ry, Roy 'ﬁ3, RESPECTIVELY, UTILIZING EQUATION (2.9)
AND SIMPLIFYING

P

R = PpcosBcosy + Q-cosOsing - R SINO + ;?5 -y siN o, / (3.5)

= Pe(sinfsinecos y -cosPsin ) + Qe(siNg sin 6 sin B +cosfcos ¢ )

0
[

+ Re sinfcose + 8cosd + ¥ él)ﬂOcosQ. (3.6)

Re = Po(cosPsinecos Y+ sInBsing ) + Pe(cosPsiNOsing -$inBcosy )
+R. cosPsinO- Osind + ¢ cos@cosp. - (3.7}
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EauaTions (3.5), (3.6), ano (3.7) ARE THE DIFFERENTIAL EQUATIONS WHOSE
SOLUTIONS GIVE THE-EULER:ANGLES OF 'THE SEQUENCE ¥, 0, ‘P wHEN THE SiX
COMPONENTS Wp,,W -, ARE KNOWN AND ARE USED.WITH EQUATIONS (2.9) To FinD
THE DIRECTION COSINES,

IN case T = O, THAT 18 ¥ 15 AN INERTIAL FRAME, EQUATIONS (3.5)s

(3.6}, ano (3.'{) ARE

Pe = ﬁ - sIN© - R | _ (3.8)
Qg = © cos P +¥ sinfcos © (3.9)
Rg = ybc_os ocosf - ©sin P : ' (3.10)

WHEN THESE EQUATIONS ARE SOLVED FORY, O, ﬁﬁ, ONE OBTAINS

g = (dRS}NQ + Rétosﬁ) éECO: - ‘ (3.11)
0 = QRcos¢ - PR, sin ' o - (3.12)
§ =P, + (QgsiNg + Recosp) TANO_ | : | _ (3.13)

THE EQUATIONS FOR THE SEQUENCEY , ®, © ARE OBTAINED WHEN Ligp OF
EQUATIONS {3.1} 15 SET EQuUAL To : ' '

Un/r= W3+ BR ) 4 oRp | (3.1%)

WHERE R, 1S OBTAINED USING EQUaTION (2,10) As
| Ri1 = Frcos ¢+ FpsiNg : (3.15)
UTiL1zINg EQuaTION (3.14) ano {3.15) in {3.1)
PaR1 + QrRo + RR'R'3 = (P + feos ¥ )F,
+ (Q +Psin ¢ JFp + (R, + 4;)?3 + ORp. . (3.16)

-

DOTTING EQUATION (3.16) wiTH R1s Rpy R3 RESPECTIVELY, UTILIZING THE
DIRECTION COSINE MATRIX OF EQUATION {2713) AND SIMPLIFYING

Pe = P{ -sInG sing siN# + cos © cos ¥)
+ QE[sunGsm;ﬁcos_ ¢ + cos OsiN ¢¥)

-R.siNOBcosP +fcos 6 - ¥siIn ecosp : . (3.17)
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Qq = -P.cosPsing + Q.cos Pcos ¢+ R.sin

+0+¥sin g (3.18)

Ry = PF(cosemﬁﬁsmw + sINGcos g ) + Q. (-cos@ sIN ¢ cosy |
+ SINOsINY ) + R.cosOcosf + Psine + cpsOcosyﬂ | | (3.19)

EeuaTions {3.17), (3.18) ano {3.19) ARE THE DIFFERENT!AL EQUATIONS WHOSE
SOLUTIONS GIVE THE EULER ANGLES OF THE SEQUENCEY , , © WHEN THE SiX
COMPONENTS W s Wgy ARE KNOWN,” THE SOLUTIONS USED WITH EQUAT|ON

(2.13) jrui:u;.‘._'rgz DIRECTION COSINES, FIJRTHERMORE_,_ IF THE EULER ANGULAR
‘ratES (, B, © ) ANDD {oRW ) ARE KNOWN THEN W.{ ORW‘__) CAN BE
DETERMINED. USING EQuATions (3.17), (3.18) anp (3.19).

-IEBF = O THEN EQuaTIioNs (3.17), (3.18) ano {3.19) reouce To

PR;'ﬁ.Eos 6 ¥ sin Gcos P (3.20)

_QR‘= 6+ sin g (3.21)

Rg = ﬁsm@ +ap cosecosf (3.22)
SOLVING THESE EQUATIONS FOR

¢ = (Rpcose - P_sinNg)SECH (3.23)

$  Pcose + ReSING (3.24)

6= Q; + (PRSiNO" - R,c058)TANG (3.25)

|F THE COMPONENTS OF am IN THE LATTER DiFFERENTIAL EQUATIONS ARE KNOWN,
THE SOLUTIONS YIELD THE DESIRED EULER ANGLES FROM WHICH THE DIRECTION
COSINES OF FIGURE 3-1 . CAN BE OBTAINED, IT 15 WORTHWHILE TO NOTE TMAT
@ AND & ARE NOT DEFINED WHEN § = *90°,

THE THREE DIFFERENT}AL EQUATIONS FOR EACH OF THE REMAINING EULER
SEQUENCES MAY BE OBTAINED IN A SEIMILAR MANNER,

SUMMARIZING THE 51X VYECTOR EQUATIONS FOR THE 51X EULER SEQUENCES,
ONE OBTAINS

1]

(9, 8 )5,
tw ) ﬁq O)JER
(¢ s O )3GR

L_IJ-F + wF + gﬁéz i ¢E‘|

3
—JF +¢_F3 + 52515.” +é'ﬁ'2

i

i

f
£l

. +BF o+ BRy, *J’F?, (3.26)

71



(Bygr OV =T + fp+ ¥Ry + ORy
(6, W) T o+ P +VR
(8, ,¢):E; = G} + QFé QRBI ﬁﬁ‘ | (3.26)
THE THREE SCALAR EQUATIONS OBTAINED FOR EACH OF THE EUI.IER SEQUENCES

oF (3-26) (A ToTaL oF 18 SCALAR EQUATIONS) ARE GIVEN IN FiGURES 3-1 To
3-0 FOR THE RESPECTIVE SEQUENCE, -
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R\ ?3 = R31

\ isT

5;? -

\}’F'l F2 F3
A &
"rIl -s0sPiy + cOcp sefcy + cosy -secd
"2 ~cfsi et .
ﬁ?, Os@sy + sOcy -ﬁQsPﬁch + sésqb cocd

i = 1, 2:3

Pe = Pcose - ¥sinocosp + k,

Qr = 8 +¥SING + Ky

Re = PSING +4 cosOcosf + K3

E;SI = c0s6(Pg-K;) + sING(R -k ) :

© = -Tanfcosd(Ry -k } + {Qg -K )+ TANQSINQ(P R =K1 )
v = LosG(RR-x3) - st(F’ -Ra sec @

Fie., 3-1. SeEQUENCE ¢, ﬁ, .
‘ 73

Ki = PFAEL + QFAlE + RFAi'3




| :

R1g=R} 1 2 -3
Ry cely coOsy ) -50
r  BPsecy -cPyy | sPsesy + cfcy sPco
R3 cPsocy + sPs¥| cPsosy - spe¥ cfco
PR = é-w SING + K'l I N .K4| = P_FAIL +‘ QFAIQ + RFA|3
Qp = 6cosf +y sinfcoso + Ko =1, 2, 3.

Rg =y cosOcosP~ Osing + K3

e
J

= (Pg=K;) + TaN T cosﬁ-(RR-KB) + TANQSINﬁ(QR-Ke)I ‘
Elwﬂ(QR—Ke) + cosﬁ(RR-KB)J SECO

+ cos;ﬂ(QR;Kg) _5;N¢(RR_K3)
Fie. 32, Seauenc y, 8, £,

o
3 Il



-0
[

O 0D
a
n

X

D . s
1]

Fia, 3-3.

O - PsiNnv + Ko
Bsinocos ¥ + YcosOr K3

Sequence B, ¢,

feostcos¥ - ¥ sine + K1

'cosQ(RR-K3) -~ SING(P-K )

6.

Fo

T

3

co oy cos¥ cf + sosp | s ¥spco-sec
-5y cfc ¥ ¢ ysp
s@c ¢ s@sy .cﬁr-cesﬁ sesPs¥ + cocd

EINO(RR-K3_) + cose(P,-Kq)5ec ¢

[e]

PediL + QrAp + Reapg

t, 2 3

{(Qp-ko) + TANY cosO(PRf-iq) + TANY SINQ(‘RR-K3)




Fle.

Fa

F

3

1 R, - cocy | cw_Qsﬁ + sy cP ;50;¢C¢f s Psp
ﬁ'é.- s cb : -s-z,{i s0sp + o cp _,595'# clfﬁ + c¥sg
‘ﬁ'3 50 ~sfco cocP
= feosecos ¥a OsING + X, ke

Scosy - PsINY cosO + Ko
@sin0 ' K3

u

[E‘?S!{’ -Pr-k1) + sin¥{Qz-Ky) Tseco
cos Y(Qp-Ks) + sing PR"Kl)

= (RR-K3) + SINYTAN o(Qg-ky) - c‘os'l’ TANO(ERjKI)

3-k, Seauence @, 6, ¢ .
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e co

-~
”~
e

. ¢

/ ——
- Re2

p— - V__

7, o 3

sV -c{ s@

chc ¥

cPs¥ sd + spce

-s[ﬁc v

-.sﬁs wsé + cfco

PFA'Q + QFA|2 + RFA!
1, 2, s

Ro [cPsi o6 +sPse
Ry sps ¥ co +cPso
P =@ + Bsin¥ + K1 K, =
Qe = ¥ sinf + Scosfeos P+ Ko o=
Ry = cosf - Osinfcos i + K3
v = cdsQS(RR-K3) + SINB(Q-K,)
g = (Pe=kq} + TAN¢5|N¢(RR-K3) - Tan ¥ cosp(Q,-xy)
6 = [cosp(Qq-kp) - 51N¢(RR-K3)JSEC(IJ
Fle. 3-5. Sequence 6,y , #
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3

7 [° PsPsO + ¢ ¥ co st cf s¥ spco - c¥ 50
Ry lcy sPs6 - syco c¥cp c ¥ sPco + s ¥so
F3 cPs0 . -s¢@ cfco

P =fcos ¥+ Osiny cosf + Ky Ki = Peatp + Qeajp + Reass

Q =ocosfeos¥ - Psint + Ko 1=1,2 3

R =1y -Bs NG + K3

cosy (PR-K«I)-SIN {Qp=kn)-

e, O S
]

Fie. 3-6. Sequence 6, @, ¥

[Cosy (Qu=kp) + sin ¢(P -k;) ] sec @
+TAI_~I¢ SINY (f'R-K]) + (RR-K3)+?AN¢COS_§{/ (Qq=%5)

5 )
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PROBLEM EXAMPLE

GIVEN'THE ORIENTATION OF THE MISSILE BODY AXES (8, Bp, 33) W1TH RESPECT

To A GROUND REFERENCE FRAME (G, 5, 33) THROUGH THE FOLLOWING ORIENTAT{ON
YAV, PITCH, ROLL, (¢, e, )] » WHERE :

¥ =3
o= 45°
g =0

TO FIND THE VALUES OF THE THREE ANGLES OF THE SEQUENCE PITCH, YAW, ROLL
(@, , P) DRIENTING THE SAME BODY AXES WITH RESPECT TO THE GROUND- REFER~
ENCE FRAME."

THE DIRECTION COSINE MATRICES FOR THE SEQUENCE {0 , '-e-,'_@ AND (D R )
ARE GIVEN IN FIGURES 3-2 AND 3~-H RESPECTIVELY AS

8\ fticld [cnsP 512 B‘fé
32 . sPster ey | s@sesT
l wc fsg | +cfecy s B;g
Bzl \cBsrocl| cfseer s¥ .
4 3 \‘l—s_@-s_@ -s_@'c_lf 32 333 (3-27)
AND
By ¥ ce sy - 59\' 'G'.I\ Bl7 B B3 El\
5, | [Tcpeuco z '
2 \_ +:¢:9 ) chey | cfspse 2 21 %22 P23 %
5 3 +sgc9
s c@ -sfc ~-sPs¥sef |G B3] Bap Baa [\ T
3/ \¢c¢50 -sfic +cfce 3 3 3_ ' 33 3 (3-28)
(6,¥ @)

THE BODY AXES (a ) OF EQUATION (3 -2‘() EQUALS (B ) OF EQUAT (ON (3_28) AND

(c,) or equaTion (3-27) eauaLs (G,) oF EQuaTION (3~2 8), THEREFORE THE TwoO
DIRECTION COSINE MATRICES ARE EQUAL, AND HENCE coanzsponoma ELEMENTS OF
THE DIRECTION COSINE MATRICES ARE EQUAL, ' ’
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EQUATING ICIORRESFOND ING ELEMENTS OF THE F IhST ROV}, SECOND COLUMN
8fa = 812 _ B
sy = c sy . (3-29)
" OR L ] )
v =swlewsy, - (3-30)

EQUATING RATIOS OF THE ELEMENTS OF THE FIRST ROW, THIRD COLUMN TO THE
FIRST ROW FIRST COLUMN OF CORRESPOND{NG MATRICES

BT3 = B.[3 = =54 = ‘WSQ .
* : ?
5 B, 0c¥ Qice
-TAN @ = = Tan O sec¥ . (3-31)

To SOLVE FOR B, seT
B = g¥ '
2 T %
B2p B3
OR

—sﬁjc\b = cffs B/ sy -s P
cf ¥ sEs ¥ st < Pc¥ (3-32)

DIVIDING NUMERATOR AND DENOMINATOR OF EQUATION {3-32) BY & c_@'c_q; ONE
OBTAINS

~Tan B = 5 O TANY - TAN @

TAN @(S O TANY J+ 1 (3-33)

SINCE TAN (Xx=Y) = TAN X = TAN Y
TAN X TAN Y 4+ 1

LET SHYTANG = TAN X
TAR g =TaN ¥,
THEN X = TA'N"1(soQ-;TAN_F,_/7"')
v=5

AND

;TAN ¢ = TAN EAN"‘(S'Q-’TAI\NI ) -_,@-_7 ’
@ =_§ - TAN‘IEPG-WA&_@']' (3-34)
" 8p | |

OR



UsineT = 30°, vm 45°, F = 0° anp couaTioNs (3-30), (3-31) anp
- (3-34) o . -

Q= _l+9°6'_

¥

goaese o (3)
To VERIFY THE RESULTS, SUBSTiTUTING THE TRIPLE (30°, 15°, 0})

iINTO THE DIRECTION COSINE MATRIX OF EQUAT3ON (3-27) For (§ , +&4,
YIELDS APPROXIMATELY - .

20°4p!

B, .61237 | .35356 - - 70711 8,
B, |- | -.50000 86603 o || %
B3 .61 231 .35356 L7011 &
(&, ,5)

SUBSTITUTING THE RESULTS OF EQUATION (3-35) INTO THE SEQUENCE
(6,¢ , #) or eauation (3-28} vieLps

2 L6124 .3535 - TO6TT 5

By |= | -.4966 .86790 .60370 5,

E3 61478 . 34889 .70715 E3
‘ { &y, )

SEQUENCE CONVERSION

|T APPEARS THAT THE EULER SEQUENCE YAW, PITCH, ROLL (‘@,'@ﬂ, _ﬁ)

ORIENTING THE MISSILE BODY AXES WITH RESPECT TO THE GROUND AXES ARE OF

THE NATURE OF A "PREFERRED" SEQUENCE., THIS SEQUENCE OF ANGLES IS5 QUITE

OF TEN EITHER DIRECTLY OR INDIRECTLY USED TO "CONTROL" THE ATTITUBE OF THE
MISSILE. THIS SEEMS QUITE NATURAL WHEN ONE CONSIDERS THAT THE YAW ANGLEQ
OF THIS SEQUENCE 1S THE GROUND HEADING ANGLE WHEN THE MISSILE HAS NO ANGLE
OF ATTACK, THAT THE PITCH ANGLE ¥+ (ELEVATION PLANE PITCH ANGLE) 1S THE
MISSILE CLIMB OR DIVE ANGLE IN THE VERTICAL PLANE,
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‘As’A RESULT OF THE ' PRI‘.’.FERRED" NATURE OF THE SEQUENCE (&, %, §) e
CONVERSION BETWEEN THE ANGLES OF TH1S SEQUENCE AND THE OTHER FIVE seouzuces
HAVE BEEN MADE IN THE FOLLOWING EQUATIONS, [N ALL CASES THESE RELATIONS
ARE OBTAINED FROH EQUATING THE MATRICES OF F:suaas 3-1 7o 3-6

"THE MATRIX FOR ThHE SEQUENCE (@, o+, _ﬁ) 1S DENOTED BY M(E,%,ﬁ) AND
SIMILARLY FOR THE OTHER SEQUENCES,

ConvERS 1ON BETNEEN (f D+, B) ano (!b ﬁ, 6}

Equnme THE TwWO MATRICESIOF FtGURES 3-2 AND 3«1
M(E';’G" 2 ﬁ) = M( '1": Fj’ 9):
TO FIND 'O
X =
137 Pi3

SIN®= sIN OcosP

HH= sin"1(sinecosp)

To FinND P
. Lo
23 23
B¥* 8
33 33
sSiIN § cos & = SIN
cos § cos KH cos GcosP

TAN § = sec © Tan §

F = 1an~i(sec & Tang) | }

To FIND :

1 = B

12 12

5% 811
COS KM SIN = SIN @ SIN QS cos@Y+ cos @ sINY
COoS 15t COSY -SINB sIN @ sINg+ cos @ cos¥
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TAN = SiN O sin f cosy + cos O sing

cos @ cosyP - - . cos 6 cosy

SIN-OSIN @ SINY + €05 © cosy

= cos & cosy ~ tos O cos ¥
TAN ¢ = Tan-OsIN § + Tan
T - TAN © SIN P TANY
LET TAN © SIN f = TAN X; LET TANY = TAN Y
TANY = TAN X + TAN ¥ = TAN(X + ¥)

1-TAN X TAN Y

x = TaN"'{Tan @ sin §)

y= ¥
Tan [Tan “V(Tan 8 sin B) +9 7

ITAN_I(TAN O sin )+

TAN ¥

To FIND @, LET: Bp3 = 3;3
siN § = sIN § cos %A
$=sin"Vsin F cos

TO FIND B, LET: 313 =

3

*

%

B g¥*
33 733
SIN B cos §  siN
cos © cos § = Cos § cos O
TAN @ = se¢ § TaN ©

6 = Tan~l(sec B taN ©)

TO FIND PLET:

»*
81 - %5
*
o2 Ppp



~cos @ sing =. si&%s‘iuo&cbsif -cos% sing

cos P cosy sIN D sinO s +cos § cos?

SIN ﬁsma&cosd; - cos @ sing
cos_@‘cosﬁ cos J cos¥

“TANY = sm_ﬁ'sm'&smg cosfcgsg
cosfcos@' cos § cosy
~TAN Y = TAN § SiNDi- TAN T

TANﬁSiN‘@iTANE-H
LET TAN § SiN 9+= Tan X
LET TANJ= TAN ¥

~TAN¥= TAN X = TAN Y = TaN (x-v)
CTAN X TAN Y +1

x = TaN ~H(Tan § siN¢ot)
v=Z
—Tang = TAN/Tan “T(Tan § sin ) -2/
sp= Tan-l(Tan Fsing) -F
W= TAN"T(1aN T sin®) + T
SUMMARIZING:

TAN"(sEC © TAN/D

siN"V(sin 6 cos @)

= sIN"V(sin Fcos e )

o w & §
"

= tan-V(sec f Tanior)
G- AN (Tan B sinebe)

17
Conversion BeTweeN ( @, #4, ) avo (B¢, @)

Eeua'rme THE TWO MATRICES OF FIGURES 3-2 AND 303

ME , 01, 8) = u(,¥ ,-0)

85 ‘;

= tan"H{TaN @ sIN §) + @ M(D,rn, ) =My, @ o)



To FIND ¥

B*
12 3_12
a¥* B .
1 . 11

rvs? = ¢ © s ¥cf + sosd
CHmC o K1) c'!_U

TAND TANY ¢ P + TAN © s @ sEcy |

. * -
TO FIND #O4; _513 313

spu=sVsPco-s0ch
®+ = -sIN"H(sIN¥siN P cos 8 - sin O cos B

Tan-{tangcos P + TAN © sin P secy )

To Finp § ¢ egs = 533

p* B

e3 23
f oo sesfsy+ cocp
5 c¥s B

§F = cot"1(51N® TaN-¢ + GOs @ sEcy coT )

To FIND¥ : Bp1 = Bj,

~sY=s P sencT-chs?
= sin-1(sin @ sin 6 cosP - cos B sinF)

To FIND ©: B *®
31 = By
81; 8y

s O c¥. ¢ el +sfsT
c o oV jsc@acf

TaN e =cFscT+5PsT
cHHcy c BcH-
6 = tan~1{cos F Tan B+ sin B sec BiTanT)
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To Finp P: Bop _ 8%,

Baz B33
cPheyy = §§Ls'-9-is¢/ + cfed
spc¥ s P o4
coT §=sfs 0sT + c Fec¥
s F cwn sfﬁ:-e:

= cor=l(TaniBas T + cot_f cos Fsec 0)
SﬁnnAalzING: _ |
| 7= TAN"I'(TAE{UCOS @+ TaN © sin P secy )
W = -siNT1(sin w‘sm‘;ﬁ cos © - siInN @ cos § }
g = cot=1(sin O TaNy + cos @ secy cot B)
v = sIN"(sIN F sinedecos T ~cos_F sing )
0 = tan"H{cos § Tan 14 sin sec eTANT )
§ = COT'?{TAN!@!SI'NE + cpr_@-.cosfﬁéc@)
M(T, o+, B) = M(#, 6, ¥ )

To Finoy : B

RERNE
*
"1 Pn
cos i siNT cos¥ sin © siNn @ + sin¥cos @
coscosy | cos® cos ¥ ‘
TAN § = TAN © SIN $ + TaNy sEC @ cos @.
T = 7Tanl(1in 8 sin B + Tan¥sec 6 cos @)
To FIND® B¥* =
. 13 . 13 L
~SIN#4 = -sIN O cos Pcos¥+ sin¥sin
)4 = SIN"I(siN O cos P cosy -sing sING)
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To Fl_rgf: #:

‘?§3 _ %3
®53  °33

siN § coss SIN O siNy cos B '+ cosy SIN @
cos § cos O B cos © cos P - '

i ! . L .
TaN § = TaN © siNY + cosy TaN P sec ©

- B = 1ai~1{ran © sin¥ 4+ cos¥Tan § sec 6)

To FIND @: 331 ' B§I

SIN 8= cos § sine@cos¥ + sin @ sinE

o= sin-1(cos F sinwcosT + sin F sing )

» *
To Finp f: Bap 532
B 8%
33 733 |
-sIN @ cos © cos SINFQO_LSINE-SINECOS.E :
cos pcos @ ™ COS#e COS ¥

-TaN @= vaN _F sec icos? + Tan @15 ING

§ = tan-1(7an_J secovcosT + TaNt4sIND )

L] *
To FIND W By B%,
1 B

-siNycose SINF sinedcos § -cos § sine-

cos¥cos © cos+cos
TANY = Icos_ﬁ' TANZSEC B4~ SIN § TaN B .
W = TaN"1{cos § TANT sec+s- SIN F TAN @)
SUMMARIZING: | _
T = tan-1(1an @ sin @ + Tany sec © cos )

e m sIN“H{sIN © cos P cos¥-sINYsInN §)



= 1an"1{TaN © SINg+ cosif Tan B sec 6) ; (3-38)

sm“(cos-_ﬁ‘smﬁ@-c'usf + sin @ sing) MF ,en, ) =
' B s " My, 8 8

fara_"(rgnjsz_c&cos@ + TAN #sin D)

< w o hsy
n

= TAN”’(cosj’r;ﬂfsac Wi -sin f Tan e )

Conversion BetweeN (T, 194, B) ano (6,y, §)

EQUATING THE TWO MATRICES OF FiGuREs 3-2 aND 3-5. M(:¥, %+,8) = M(6,¥,8).

- *

To FinD P : 512 LI
*

1 n

cos O sINg  _ SINW

cos O cos & cosW cos ©

TaNT = TaN ¥sec ©

¥

TO FIND 03

Tan~1(van #sec ©)

»
®13 = %13
-SIN 4= - cOS¥ SIN ©

pov=  sIN~1{cos¥ siN O)

To Fino _§:

B¥ B

23 = 23

B* B
33 33

SIN Q'.cos:vau _cos Bsin¥sing + sin fcos @
cos f coss  ~-siN P sIN®sIN O + cos P cos ©

cos § siNg SIN © _ sinp cosO
cosfcos @ - cosp cose

TAN _@‘

cos P cos@ - siNn f sINYgSIN G
tos @ cos@ cos  cos ©
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TAN G =TaN @ sINY + TAn @
) T- TaN § TAN © SINY

LET: TAN X = TAN © SINV; TAN Y = TaN @
o . x= ITAn'?(_jANQSlN v)sy = @
TaN § = Tan [TANT}(TA_N © sy H* ;
 F=p+ Tan~V{(Tan '@ sINV )

SUMMARIZING:

f = :rgs_"('rm wé;cg)

o = sm"(c_os wsIng)

B o= f 4 (1an 0 sin ) (339
¥ = SlN”{COSf@!SII.N gy - COM(F, e, P) = M(s, '//;ﬁ)
6 = tan~1{Tanrovsec? ) |

B = F- tan-T(siN@TANT )

NoTE: THE VALUES FOrR ©, ¥ anp @ wERE 08TAINED 1§ “PROBLEM EXAMPLE"
PaRAGRAPHS 3-30, 3-31, anp 3-3h,

Conversion BeTween (164, § ) ano (8, £, ¥)

EQUATING THE TWO MATRICES OF FIGURES 3-2 AND 3-6.

M(I:'e":.@-)= M(Q, ﬁ,!,b]

To FIND #BH:
873 = %13
-5Hn = sy s c O - cysO ‘
f-G-i=s|NI'1(_c¢¢sQ-s¢s¢c¢) _ |
Fo = sin~T(cosy si1NO - sing sIng cos ©)

% .



W

+#*
11 . P
B* B

cHHCY = sy sP 50 + c¥co
¢y s¥cP

cotZ = TaN § SO + coT Yo sec P
T cot “1(7an @ siN © + coT¥ cos © sec §)

¥ B

23 23

8% B

33 33 |
sfc 0 = cysPcO® + sSyse
cfe 0 g co

Tan @ = cosy Tang + sin ¥isecg TAH @
F= ran~coswtan § + sin¥sec § Tan Q)
832 = 8%
-sf = cfsve-fsqb- s e
g = st"‘1(5|N_§'cosE-cos_@' SING SIN 01 )
Bap _ B3p

Bio 8fp

cwcg . §§s'0.52_+ c Pl
Sy ¢ cHo4 sy

SING TaN @+ cos P secHe-coTd

coT ¥

Yy

cot=1{sin F Tan B4+ cos § sec wucoT ¥ )

il
B¥*

33 33

cpse _ cfseecl v sl

cPco cPore

TAN @ = TANHHCOST+ TaN § sinFSEC v

Tan=1(1an 0 cosT+ Tan § sin Tsec 0

,tﬁ;

o

o
i

n



SUMMARIZING:
T = 5!"71-1(905(115“1' 6 - sinV¥sin B cos 9)

= cor™!{1an § sin © + coT¥ cos 0 sic f)

o (3H0)
M( ',O,Qj):M(Q, ¢:)

'I‘{AN_'.I(CQSQIJTAN g+ $|N ¥sec P TaN ©)
= sm'“sm_@’cos T-cos F sinsin T)

= co1"1($1N_@'TAN Wi+ cos § sec ® coT T )

o € w ky iy
"

= Tau“i(nn@cos@'-a- TaN P siNnTsec ' )
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TRANSFORMAT|ONS FROM DIFFERENT AL EQUATIONS

IN THE DIRECTION COSINES (WITHOUT EULER ANG LES)

"THE BIRECTION cof(NES CAN BE OBTAINED DIRECTLY IF THE COMPONENTS OF
THE INERTIAL ANGULAR VELOCITIES OF THE TWO FRAMES ARE KNOWN, THIS METHOD
FOR THE DETERMINATION OF THE TRANSFORMATION MATRIX DOES NOT REQUIRE KNOW=
LEDGE OF THE EULER ANGLES, NOR A PARTICULAR seeuznce, BUT THE INITIAL
VALUES OF THE-DIRECTION COSINES MUST BE SPECIFIED, THE DIRECTION COSINES
BETWEEN THE R; FRAME AND F} FRAME ARE REPRESENTED .8Y THE ‘MATRIX EQUATION:

R M1 M2 A3 Fy
e | = Aot Azp IA23__ Fa (k-1)
33 ‘ A3] a32 A33 ?3
By equatien {B)
E - ) - = ¥
J AaFr v Rpfa  f Ayafg (4-2)
~ AND HENCE
Re % AJLFH + ApFay 4 Adj?j 4 oAy T (B-3)
THE TIME DERIVATIVES OF'F} ARE GIVEN BY
= IF - —
Fi =71 4 ¥ x F, g o= 1,2, 3 (4-4)
KT
SINCE Jp
F‘J = 0.
g T
EquaTion (4-4) BEcoMes
Fyo = wy XFJ v = 1,2, 3.
OR
U R_F;:e = Qr?:;’ (4-5)
F3 = QF - PFF2 (Ll’--{)



5

1 B +
THE TIME DERIVATIVES OF THE R, ARE . _

..éT = RIR?E - QRﬁ‘j _ Lo o . (h_8)
oetmtam )
| ﬁ3].'..géﬁi f-,Péﬁé | ' o (ka10)

 UT1L12 NG EQuaTToNS (B=5), (L4-6), (4-7) ano (4-8) with eauaTions (4-3),
J = 1, AND COLLECTING LIKE COMPONENTS

ReRp = Q§E3 = (&, - app R+ A3 Q)7
+ {Ryp -A13 Pe + A]1RF)Fé |
+ (A3 ompy g+ agpPr )Py | (§-11)

= = 1 : :
DotTing (4-11) wiTh'F,, Fps Fay RESPECTIVELY, AND USING EQUATION (4-1) THE
FOLLOWING DIFFERENTIAL EQUATIBNS ARE OBTAINED:

1= 2R T gl + ApRy - a30

Ay = A =
12 13PF --A11RF + ApoRp "“SEQﬁ (4-12)

A13 = A-I-IQF - AIQPF + AEBRR - A33QR

IN A SIMILAR MANNER
Pﬁﬁ3 - RBBI = (A21 - AQERF + h23QF)F1
+ (A22 - A23PF +.521RF)Fé + (4-13)
(Apg = ap1Q + AgoPeJFs,
AND .

A32RF + &BSQF)?I

+ (332 - A33PF + AjiRF)Fé +

(Aqny = AqqQ_ + a P )F (§-14)
337 7317 T T327F M3

ARE OBTAINED, DOTTING (4-13) anp (4-14) with Fy, Fp, AND F3, RESPECTIVELY,



AND USING EQUAT1ON (lU-1), THE FOLLOWING TWO .SETS OF EQUATIONS ARE OBTAINED:
: ’ . . . i ‘ . '

A, = & -
21 = A2ofp = AgaQp + A31'R A11Re

Aoo

ApgPr = An(R: + A§2PR -~ A1aRy - (ka15)

%23 2% 7 AopPr + A33fg - Ay 5R,

AND
731 7 M3aRe < A3gQr + Ay - *21Pr
"32 = A33Pp - AgRp + A1ply - APy
A33 = 2310 = AP + A0 - AP (4-16)

THE NINE DIFFERENTIAL EQUATIONS GIVEN IN EQuaTions (4-12), (%=13), ano
(4-14) can Be WRITTEN AS THE SINGLE £QUATION:

gql = A+ 1} (0 +2) T AU+ 2)

“F(l + 1) +'A(J £ 1)

"'-"JR(J + 2) - A(J + 2} Wr{y + 1), _ (’4-17)
(__l = 1,2,3,)
(u = 1,2,3).

THE CONSTRAINING EQUATIONS ON THE SoLuTioNs of (4-17) are, of course,
THOSE GIVEN N B-J2, THESE S1X RELATIONS WILL BE IDENTICALLY SATISFAED

BY THE SOLUTIONS OF 4-17'. IT 1S To BE NOTED THAT THE EQUATIONS (B-10):
3
2
=1
3

; Ao+ 1) 1 =0; v =1,2,3,

1 = 1
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CAN BE USED TO REDUCE THE SET OF NINE ntFFERENT|AL'EQUAT:oNs,,(4-17),
TO ‘A SET OF THREE DIFFERENT)AL EQUATIONS, FOR' SUPPOSE Ayq, A1g; AND A23
ARE CHOSEN AS INDEPENDENT, 1T I'S THEN POSSIBLE TO SOLVE THE EQUATIONS
(4318) FOR 413, Ay, A22:=A31,'a32, AND “Ag3 AS FUNCTIDNS OF Ay Aqgy AND
A23; EQUATION (h-l?) WiLL THEN Raouca-fo_THREEfEQUArlous WHICH INVOLVE
H o o .
117 A12s 423s At1s Args Apgs PeQpRp AND PoQuR..

THE SOLUTIONS OF THE DIFFERENTIAL EQUATION Given IN (4-17) are, of
COURSE, THE DIRECTION COSINES A, ;. IT 1S NOTED THAT P‘_.QFRF AND PRQRRR,

AS WELL AS lNITIA.L' VALUES ON AJI’ MUST BE SPECIFIED IN ORDER THAT THE
EQUATIONS HAVE SOLUTIONS,
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MECHAN) ZATION OoF DIRECTION COSINES USING DERIVATIVE oF DIRECTION

Pe IPa
1 A21 Peroi
, Egg-n-  ——C
-h11 PBA31
| 32 N
! S B33
QB !QB .
A1 Qat1q1
| A12 QA1
A13 | Q :13
l. A3i B”31
Agy t Q5430
| 33 1 Set33
Rg Rg
| A11 Rah 1
A2 sty2
l A3 _Rﬂﬁ3
| Ag] gh 1
Aoo B 22
l “?? _“3523
Fra, -4-1,

CosINE TECHNIQUE,

o

A
: 1/s R
431Q 1 I
A2oRpg |
—_— i2
I
A_ R .
E 2 '1/3 ] A]?
*33% 1 '
|
A31_PB_ I A21
A P
3?_9_.__.1 s | %22
A12RB = I
A hP A
. Ve 57 | o3
2137 0 |
ilQ e e
. ' 1/s 31
A21Pa 1 l___w |
1203 A
B  / L 32
45oFp 3 /s ;
: |
A13Qa 51 I A33
oy Py ]




TRANSFORMAT |ON BETWEEN TWO REFERENCE FRAMES

AS THE PRODUCT OF TWO DIRECTION COSINE MATRICES
WHEN DIRECTION COSINE MATRICES BETWEEN EACH OF
THE TWO REFERENCE FRAMES AND A THIRD REFERENCE
. FRAME ARE KNOWN

[ExAMPLE:_.wsNd“szs TO BODY AXES TO GROUND axes, [

TH1S METHOD OF OBTAINING THE DIRECTION COSINE MATRIX BETWEEN TWO
REFERENCE FRAMES 1§ THE THIRD METHOD OF THE THREE COMMONLY USED METHODS
MENTIONED IN SECTION i, A PARTICULAR EXAMPLE IS TAKEN TO JILLUSTRATE THE
METHOD, ' ‘ ' ' '

Cous:nzn THE ORIENTATION OF THE WIND AXES w. WiTH RESPECT TO THE
GROUND REFERENCE FRAME T, AS SHOWN IN FIGURE 5~ -1"tiRoUGH THE EULER SEQUENCE
YAW, PITCH, ROLL WHERE THE YAW, PITCH AND ROLL MATRICES ARE DFFINED AS -
FOLLOWS

Moty
Mo (% )

_ (5-1)
| MR = (Qv)

FroM EQUATION (5-1) IT.1S SEEN THAT THE NORMAL PROJECTION OF THE VELOCITY
VECTOR {ABSOLUTE VELOCITY WHEN NO EXTERNAL WINDS, OR RELATIVE VELOCITY

WITH EXTERNAL wlwns) IN THE HORIZONTAL PLANE MAKES AN ANGLE“Yy WITH RESPECT
TO THE G, AXES, THE PITCH ANGLE'{ls THE ANGLE :MEASURED IN THE VERTICAL PLANE
WHICH THE "™VELOCITY VECTOR" MAKES WITH THE HOR I ZONTAL.

THE ORIENTATION OF THE WIND AXES WITH RESRECT TO THE GROUND AXES |5

¥, = MR(ﬁv)MP(-;)Mva;TEJ | | (5-2)

THE ORIENTATION OF THE BODY AXES WITH RESPECT TO THE WIND AXES
THROUGH POSITIVE ANGLES AS SHOWN IN FIGURE 5-2 IS5

4

%, = M (A M,(B)V, (53

OR THE INVERSE oF (5-3} _ ‘ ‘

v WAREL S (5-4)
OR
T«'] o Y -8 CB sk 31’
W, SR Cod s sl B
Te . | ¥F "o ) 21 (59
W -Sd o e B3,
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THE ORIENTATION OF THE BODY AXES Bf WITH RESPECT TO THE GROUND

AXES FOR THE SEQUENCY ('I/, , §) 1s

B = M( v 0 85, (5-6)

By £quATION (5-5) AND {5-6) AND FIGURE 3-2

W= M{ -, <BIM( ¥, 8, B)T,

oR
ﬁ1 cBeca =sB ¢ B s coc ¢ cOsy -s0 61
Wy |5 sBcd CB s B s« |sPsoc¥ -cfs Vipso ¥ +cffc ¥ spco 8y

’ ' (5-7)
;3 -Sek 0 ¢ca fsec ¥ +sPs ¥ cfisos ¥ -so ¥ cfco '63

THi1s EQuaTioN (5-T) aIves THE DIRECTION COSINES FROM GROUND AXES TO
WIND AXES THROUGH 5 ANGLES,

THE COMMON REFERENCE FRAME ELIMINATED IN THIS CASf IS THE BODY
AxlS'.
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WiND Axes ( wv;'g) As FuncTions of {¥, O, B,0(; B )
FOR ALL BODY ATTITUDE SEQUENCES

FOR THE GROUND TO BODY SEQUENCE (6, £,¥ );

B = M ¥) My (BIM(0) G
AND FOR WIND TO éoov sequence (B, )
B = Mol ) My (B )y
OR TJ'-I = M (- B) Mp( - )&s
Wi o= (=B Mp(- o WM (¥ )IMp(PIM(0)5
BUT SINCE FOR THE GROUND. T0 WIND :_.s"_eéqzncz' (¥, 1)
W= MOy M ()5,
Mo (6 MY ) = Mg (=B M (-t M, (¥ M_(B)m(8)
WHiICH l§ EXPRESSED AS

cy0 -sxX\ [fc¥ sy 0 c B B o cX

v y 0 5ch
01 0 s¥, ¥, O sB ¢B oo 1 o
s¥0 c& fiO 0 | 0 0 1" [ \-st © col
s¥sPs@ + cwco sy cf sy sfco~-c yse
c¥ sfse - s¥co cwed  c¥sPse + s yse| {5-8)
cPse -s@ . cpce |
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WH1CH YIELDS:

Wip = cBeoc (s sfs6 + c¥eo) + sB(s¥co - c¥sPse) + B sxcpso
W12-= cBeex sy #ﬁ - B cpef - sff cB s

%3 = cBeot(s¥spco - b s6) - 5B (cll!s;?ﬁs.é + s¥se) + cB sdc,‘@cg
Wy, = 5B cX (s¢ 5Ps0 + cPcO) + cB(c¥sPso - s¥cO) + P s cPse
Vpp = SB A sP c¢_+ B cwcg - sP s§<s¢5

W, = sB cot (s¥ sffce - c¥ soj) + cB (¥ sfse + s¥ sé) + sB scAcPco

W3y = sk (5P sPse + cyce + cd cPse
w32 = sc‘xs e - sfc
w33 = sd (s ¥sffco - c¥s@) + cokcpeo

W W i 1, 2, 2 ' .
HERE Vo » 25 3 /s THE WIND TO GROUND MATRIX.
J y 2, 3,

EQUATING ELEMENTS OF THE MATRICES THEN GIVES US!

cY = sx(cyse - sysPcd) + co(cfcd
¢y = -S(8y3 + CoXBag - (5-9)
“¥ = v
9, M)
cfp, = sBexsycP+ cBedcf - 5B s sp

¢y, = sBcosy, + CBBEQ+ SBSQ(E',?’E

c¥y = vy

1]
WHERE Bid C
J

FoR THE GROUND TO BODY SEQUENCE (¢, O, ¥ ), THE GROUND TO WIND MATRIX 1S:

1

’
1’

2,
2,

Ly

IS THE GROUND TO BODY MATRIX FOR THIS SEQUENCE.

cf CokCQCI;‘I + sBs¥ce + cP sxXsb
cB cokcis@sp + cBeks¥cP + sBs¥ sesp - sBcbep - cBSo(sﬁcQ

Y11

Yip
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(%, 9% )

1

¢ B e socfe qb +-c’B cex sy sP - 5{3595;{; cﬁil - sBeysP + cB sxtcocP

Wy = sﬁ coclci - chw €O + sB s 50

-WIEE = sB cacctllsesﬁ + sBcosy c¢ - cB sd:s@sﬁ + chdJ cf - sB so<s¢c9

Va3 = —sB cxsgcjﬁcr,b + schsv{xsﬁ + cﬁsosﬁcpﬁ +cBeysp + SBSOCCQC¢
W31 = -sdc@c¢1+ c:fso
Wap = ‘-s:a(cdzsespi - Sdswc;ﬁ c«sﬁc@
W, = s:stcﬁic'II- seX s'JJ sfrﬁ + Coccec;é
WHERE W{, C}-— 1, 2, 3) IS THE GROUND TO WIND MATRIX,

WHICH GIVES US:

¢ X = sq(sacﬁcw - s PsP) + coX cOch

¢ = -~So(By3 + Eo( 533 _ _ (5-‘1(_))
cY = w33

¢ @, = sBcof(cOep + sycP) + cf (~sy s0sP + cy cf) - sB sofsPce

SBCOfB-|2 + c6322 + SBSO(B3'2

Yoo

WHERE de6}= 1, 2,3) IS THE GROUND TO BODY MATRIX FOR THIS SEQUENCE,
FOR THE GROUND TO BODY SEQUENCE (8, ¥, §), THE GROUND TO WIND MATR1X

11 =cBeofcwcd + sBcPs¥co ~ sB sPse + cBso(sPsy c6 + cf seXcPse
Wip = ¢ Beacsy- sBcPey - cf sXspe

W3 = -cBexc¥se - sBePs¥so - s BspPco ~ cBsox sPsy s6 + cPscped

Wo1 = sBeexc¥co + cf cﬁs'!f 6 + ¢ Bsffse + sB sexsPsy c:9:+ s B scKcPse
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Wpp = S BexX s¥+ ¢cB cﬁcé - sf s s¢‘c¢r |

W3 =wsBeoyc¥so + cBcps¥ 50 + cBsfeo - sBsasps¥ s + sB so( cfce

W3y = s cHcO + corsPsP €O + cotcfso
Wap = sx sy corsped |
Va3 = so(c ¥s0 - cox sPs¥ s + cox cfeo

i _
WHERE W | (J}: 1, 2, @ IS THE GROUND TO WIND MATRIX,

WHICH GIVES US:

cP= sx(c¥s8) + ca ~sfses¥ + cfco)
= TeelBiy v cXBa (5-11)

o = ws3

(v, #)

c ¥y, éﬁco(-’saff-{- ¢ Beffey - sB sexsfic

SBCD{B?E + C 6322 + 5550{332

= W

a2

WHERE Bj, C}= 1, 2, b IS THE GROUND TO BODY MATRIX FOR TH1S SEQUENCE.,
J :

FOR THE GROUND TO BoDY seauence (B,¢, ©):

cBexXcOcy + sBsP+ ::CB:SO(SQCIIJ

Y11

|
Wip = cBeokcosbep + cB coX sosp - sB cfcd + B sXses¥ cf - cB s cOsp

Wiz = cB cxXs¥sPce - cB coxsOef - sBeysP + ¢ BsatsesP + B sokcoch.
Wo1 = 8B cofcaod - cBs¥ + sB sclseoy

| Wop = SBcoxsesy cp + sB cel 5650 + cB chcd + sB sKXsesy cf - sB sKcOsP
wp3 = S P CA sy sfco - sB ceksOcf + cBegsP + sBso(sesy + 58 sck cOcl

W31 = se{ ¢OC Y+ CLSBC Y
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-s50(cOs wcﬁ - sorsOsp + CeksOs VP - cqc@sﬁ

3=
Wa3 = -s sw sﬁc@ + so(s@cﬁ + cdsesﬁs v+ co(c0c¢
NHERE ‘d- <} =1, 2, ?D 1S THE GROUND TO wmo MATRIX;
WHICH GIVES us: _
o c‘& = w33 = -80(813 + t:o(333
(B v, 0 - R {5-12)

CYy= "‘22 = sf ::c:(.'s12 + B By + sB sk B2p

WHERE B }_ i, 2, @ iS THE GROUND TO BODY MATRIX
FOR THIS seouzncam .

FOR THE GROUND TO BODY SEQUENCE (qb,----ﬁ, e):

Wy eB cof(cy 0 -sPsPso) + cB sof(sPsyce + socy ) + sPcPs

Wip = cBoex(sPsec + s cO) + cBsef(sesy - cOcy sP) ~sB checy
¥i3 =-cB cox cfs® + cBsckclcf - sB sp
Wor = sBeoa(cycd - sPs s} 4 sBsu(c ¥so + sfs ¥cO) - cB cps

Vos = sBc(s¥cd + sfcyse) + sPs(s Yse - sfey c0) + c BePs
V23 = -s Bekcfsd + sB sKcfcd + cB P

W3y = col{sPs¥co + c¥se) + éoc(sgisw 50 - ¢ ¥ce)

Wip = cak(s¥s6 - sfcycd) — sol{shc ¥se + sy co)

Y33 = col(cfc@) + soLcpPse |

WHERE WN (’}: 1, g 9 IS THE GROUND TO WEIND MATRIX WHICH GIVES
J : :
us: :

¢l = w33 = --s::tB.i3 + co(aé3 |
(¥, 8, ¢) c¥= Vop = sp cdbyp, + cB By + 5380(532 | (5-13)

WHERE By, (:} =1, 2, %) (S THE GROUND TO BODY MATRIX FOR
TH1S SEQUENCE,
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FOR THE GRQUND To BoDY seauence (¥, 6, §);
Wiy = B C°<695¢'-Sé,(555590¢ ~cPsg ) + c BsX(cPsecy+ sps )
Wip = cB colcos¥ -sB (spses¥ + chc¥ j) +chB sc((cﬁsmfi; spe ¥ )
e —cBeokso - sBspcd + cBsofched

13 - .
wpy = sBeotcOc¥s cB (sfsact ~chs¥ ) + B sof(cfsocd + spsv )

Lj

Wpp = s Beokc@s g+ cB(sPsOy+ cficy ) + sB so((cPcOsy - '5¢C¢ )
Wp3 = sBeXsO + ¢ BsPebcy+ s B sox.cfico

W3y ==se( coc ¥+ Ca(c;’iseg‘ib’+ colsPsy

Wap = 5K sOsP+ cok(cPsOsy - sfc i)

W33 = sol 50 + ¢oX cfco

WHERE W, | C) =1, 2, 3) IS THE GROUND TO WIND MATRIX WHICH GIVES ~
“ ;
us:

¥ = W33 = -sX Bi3 + ok B3g
(¢, 8, 9) cwv

Won = sB cok8in + cp Boo + 8 Bsr;( 532 (5_1)4)

WHERE B, C} = 1, 2, 5 IS THE GROUND TO BODY MATRIX: FOR
J - Lo
THIS SEQUENCE,
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TRANSFORMAT ION COSINE MATRICES FROM
KNOWN ORTHOGONAL COMPONENTS OF A VECTOR

A FOURTH METHOD UTIL1ZED FOR GENERATING THE DIRECTION CONSINES IS BASED

ON A KNOWLEDGE OF THE ORTHOGONAL COMPONENTS OF A VECTOR IN THE TWO REFERENCE
FRAMES OF INTEREST. ' ’ : C

FOR EXAMPLE, !f THE POSITION VECTOR OF POINT M W{TH RESPECT TO POINT R
{SEE FiGURE 10-1) 1S KNOWN IN COMPONENT FORM IN TWO REFERENCE FRAMES R: AND

H
Ry, WHERE 5} IS IN THE DIRECTION OF Ry /gs THEN

— R - S -
Ru/R =Xiy/g  Ri =Xu/R S (6-1)
WHICH . YIELDS UPON DOTTING WITH ﬁl ' ‘
- = 3 - =
SR - --S = R,s = R + . o -
1 Ri* Y2 11 ,};1 XIM/R Rt R (6-2)
s
N xM/R

ALso, BY Ea. {t=1)

x:/R = |:Q<:/2% + 63/5 + (Z:/az]% . (6-I3)._

By £0. (6-2) 1T IS READILY SEEN THAT THREE OF THE DIRECTION COSINES ARE
AVAFLABLE. :

|F THERE ARE ONLY TWO ANGLES INVOLVED, NEITHER OF WHICH ARL ABOUT THE
NUMBER~ONE AXI1S, ONE MAY HAVE:

§; = MP(G)MY(¢Jﬁi’ .

BY FIGURE (3-2} .

cecy C oSy -s0
Si= |- Sy Cy o| Ty (6-4)
56Cuy S0 SY Co o
Or

Sy = M (UM (0)R;  (¥,0)

WHicH 8y Figure (3-5} 1s

_ CyC ® Sy cy¢s o _ _ )
Si= {s¢cC @ cv S¥s ey} Ti (6-5)
$ 0 0 c e :
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FOR THE SEQUENCE OF EQ. (6-4 ONE MAY SOLVE FOR THE TWO ANGLES

sR gy s®
piviDING ST, BY ST,

s, = @S W f T“&_?s/a . (6-6]
By Ea. {6~2) anp {6-6)
4 *a/n '
aND BY Ea. (6-4) ano (6-2)
SiN Os/r = Zu/R
5

X

(6-8)
M/R .

For THE sEQuence (¢, @ }. :
FOR THE SEQUENCE | ©, ¥ } BY THE SAME ANALYSIS ONE OBTAINS

S|NwS/R = Y:fR s (6-9)
s .
*w/r
R
- Tan OS/R = szR . (6-10)
R ] )
' Xu/R

IN A SIMILAR MANNER, ANGLES OF ATTACK ¢ AND B ARE DETERMINED IN
secTion (13), FROM THE VECTOR EQUATION.

Yw=VYaw ¥ T Y 8y {6-11)
M/w . _
AS ANOTHER EXAMPLE, IF THE RECTANGULAR COMPONENTS OF THE MISSILE
VELOCITY VECTOR Ry = Ry T, - Ry %, = Ry T,
- I
M/R u/R ! '"wr ! "M/R 1 (6-12)

WHERE THE T, FRAME IS ORIENTED WITH RESPECT TO THE R: FRAME THROUGH
THE SEQUENCE PITCH, YAW, ZERO ROLL,

A

7. =1ce 0 -50

'y /R /q
¢ 1 0 R; (6-13)
_SOT/R 0 c GTXR-
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T =[Cw 1/ SY 1/ q
SY %-'csb /R o T
0 0 i

(6-1%)
1 A _

To SOLVE FOR THE EULER ANGLES, ONE COULD REPLACE THE COMPONENTS OF

THE VECTOR oF EQ. (61} AND CONSIDER THE S, FRAME AS THE T, FRAME, HENCE
sy Eq. -9 : -

Re

sy /R = _"M/R
“uR/R (6‘15?
WHERE
R S - g2 Rs2 Rs2 'é'
“u/g [xM/R ¥ YM/R * zm/é} - {6-16)

EQuaTioN (6~16) REQUIRES MULTIPLICATION AND SQUARE ROOT OPERATONS
AND WOULD HAVE TO BE INSTRUMENTED IF THIS WERE PART OF A SYSTEM DESIGN.
AN ALTERNATE EXPRESSIOM MAY BE OBTAINED BY DOTTING. THE SECOND AND THIRD

TERM OF EQ. (6-12) BY R2 , siNCE OBSERVATION OF THE MATRIX OF F(GURE
(3-5) REVEALS THAT THE TERM ST/R IS EQUAL TO Ra.?I s THEREFORE

SiN g T/R = Ry
R 131 . (6'17)

Eq. {6-13) STiLL HAS THE TERM RVM/R s BUT DOTTING THE SECOND AND
FOURTH EXPRESSIONS oF EQ. (6-12) BY ?11
- = _RT
T, nTH—cyl/T/R— vl |
e | (6-18)
R . . .
Viu/R
pivipiNg EQ. (6-18) inTo (6-17)

Rs
WV oy g,

2 T : (6-19)
“/r
THE DEMONINATOR oF EQ. {6-19) MAY BE OBTAINED IN TERMS OF KNOWN
- Ry
QUANTITIES "Xy BY DOTTING THE THIRD AND FOURTH TERMS ofF Eq. (6-12)

M/R
BY Tyq AND LTiLIZiNG Ea. (6-17).
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R
= e -z S e . 6-20
UM[R xH/R ¢ /g z”/R /q F ?
BY Ea. (6-19) ano (6-20)
_ o
TANUJ T/R = YM/R
ME——— & 55 , (6=21)
u/R /R Zu/R /a . -
anD BY Eaq. {6-10) o
T /e = Thyr . (6-22)

Rx
M/R
WHEN DESIGNING A SYSTEM ONE MUST CONSIDER THE TYPE OF COMPUTERS

(ANALOG, DIGITAL, ETC.), WHICH WILL BE UTILIZED TO SOLVE THE EQUATIONS,
AS WELL AS WHICH SET OF EQUATIONS WILL BE MECHAN)ZED.

1



G I‘M BALED BODY KINEMATICS

3

THE ANGULAR RELATIONSHIPS BETWEEN REFERENCE FRAMES WHICH ARE PHYSICALLY
AVAILABLE AS GIMBAL PICK=OFF ANGLES ARE DISCUSSED IN SECTIONS 7 AND 8. Some
OF THESE ARE STABLE PLATFORMS, FREE GYROS, THREE AXIS FLIGHT TABLES, RADAR
ANTENNA, '

THREE~G IMBAL STABLE PLATFORM AND PLATFORM ORIENTATION

THE THREE=GIMBAL STABLE PLATFORMS DISCUSSED IN THIS SECTION ARE SHOWN
IN FIGURES J=1. THE PLATFORM PROPER, UPON WHICH THE .SENSING ELEMENTS ARE
MOUNTED, HAS THREE ANGULAR DEGREES OF FREEDOM WITH RESPECT TO THE MISSILE
BODY AXES. JT IS TO BE NOTED THAT THERE ARE TWO DISTINCT GIMBAL "Rinas"
(SHOWN AS RECTANGLES), AND THE THIRD GIMBAL 1S THE AIRFRAME,

THE Two DIFFERENT GIMBAL CONFIGURATIONS DISCUSSED ARE: (1) ROLL OQUTSIDE
GIMBAL, AND {2) PITcH OUTSIDE GIMBAL, THESE ARE THE CASES OF _ INTEREST WHEN
THE PLATFORM._"ROTOR" ESTABLISHES A VERTICAL,

SINCE THE PLATFORM FRAME E} IS USED TO ESTABLISH AN AJRBORNE REFERENCE
FRAME, THE MISSILE B80DY FRAME Bi Wi{LL BE ORIENTED WITH RESPECT TO THE Pi
FRAME, THE TRANSFORMATION MATRIX AS A FUNCTION OF GIMBAL PICKOFF ANGLES
IS OBTAINED AS FOLLOWS:

CONSTOER THE Bj FRAME INITIALLY ALIGNED WITH THE ?i FRAME AND A GIMBAL
CONF IGURATION FROM INSIDE OUT: YAW GIMBAL, ROLL GIMBAL, AND PITCH GIMBALL
AS SHOWN IN FIGURE T=1,

THE FIRST ROTATION {FROM INSIDE TO OUTSIDE) IS A YAW ABOUT THE'Fi AXIS,.
THIS ROTATION CAN BE MEASURED, AS SHOWN IN FIGURE 7-2, BY MEASURING THE
ANGLE Gy, POSITIVE FOR A POSITIVE ROTATION, AS SHOWN, THE DJRECTION
COSINE MATRIX FOR THIS ROTATION 15 GIVEN 8Y EQ, (2.1) (WHEN THE YAW ANGLE

SYMBOL 15 CHANGED FROM\{/TO Gg) As :

811 cos GgsiIN Gg O /Fl
‘521 = -5 IN GSCOS Gs O' Fe (7—1 )
Ba1 o o 1/\F -

81 = My(Gs) Py

THE SECOND ROTATION IS A ROLL THROUGH AN ANGLE DESIGNATED BY Gi WHICH CAN BE.
MEASURED BETWEEN THE INNER AND GUTER GIMBAL RINGS, -
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THE ROLL MATRIX 1S GIVEN BY Ea. (2-3) as

B2\ /1 o 0 2y
Eé3 =| O cos Gi siN Gj 821 | (7-2)

B32 "\ 0 -sIN G cos Gj 831
Biz = Mr(G1)B}y

THE FINAL ROTATION ABOUT THE BODY=FIXED AXIS 1S A PITCH, THE MATRIX |$
s1ven By Eq. (2.2)

8y césGO‘O -sIN Gy Bl
Ea 0 1 0 322 (7-3}
Eé "\ sInGy O cos G B30 -

Bf = Mp(GlEyp
By Eas. (7-1), {(7-2), anp (7-3), THE TRANSFORMATION MATRIX IS

T = Me{Go)Mr (G})My(Gs)F; | (7-4)
PERFORMING THE INDICATED MATRIX MULTIPLICATION oF Ea, (7-4), oNE oBTAINS
THE MATRIX FOR A PITCH=QUTSIDE GIMBAL PLATFORM. - -

51 €0sG,yCosGg =S ING,S INGGS ING c0osGy5iNGg + COSGgSINGGSING] =-SG,CG Py

Bp F|-s1nGgc0sG : cosGjcosGg SING;

B3 SINGgcosGg + SIN FsszNGicosGO SING,SINGg ~C08GgsINGyCcosG, cG?cG;

THE ORIENTATION OF THE B: FRAME WITH RESPECT TO THE P; FRAME THROUGH THE SE-
quENcE oF EuLER ANGLES i , @, © Is aiveN BY Fiaure {3-1) as

51 =M {8) M, () M, (¥7) F; {7-6)

IT 15 oBvious THAT Ees. (7-6) anp (7-4} ARE IDENTICAL WHEN THE ANGLE
SYMBOLS ARE EQUATED AS FOLLOWS: . . ; '

q, = Gs'

g 2 Gy = (7-7)

QIGO
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INNER GIMBAL RINGJ " P33
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OF OUTER
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GIMBAL RING




THE RELATIONSHIPS oF EQ. {7-7) ARE To BE EXPECTED, SINCE THE GIMBAL
P ICK=OFF ANGLES FULFILL THE REQUIREMENTS OF SUCCESSIVE ROTATIONS, THE FIRST
GIMBAL ANGLE 1S ABOUT AN AXIS OF THE PLATFORM FRAME; THE LAST IS ABOUT ONE
OF THE MISSILE, AXES, WHILE THE SECOND IS5 ABOUT AN AXIS MUTUALLY PERPENDICU-
LAR TO THE FJRST AND THIRD. FURTHERMORE, Gg IS ALWAYS ABOUT THE Py AXis, Gg
1S ALWAYS ABOUT AN AX!S leso IN THE AIRFRAME; G} 15 ABOUT AN AXIS WHICH iS
MUTUALLY PERPENDICULAR TO P AND THE THIRD ROTATION AX)S IS FIXED IN THE
AIRFRAME (Bp IN THIS cAsE). lT IS TO BE OBSERVED THAT EACH GIMBAL RING HAS
RIGIDLY FIXED TO [T TWO ORTHOGONAL AXES OF ROTATION, AN INNER AX1S OF ROTA~
TION, AND AN OYTER AXIS OF ROTATION., THUS, AS SHOWN IN FIGure (7-5) ThE-
OUTER AXIS OF THE INNER GIMBAL RING IS THE INNER AXIS OF THE GUTER GIMBAL
RING,

CONSIDER A PLATFORM HAVING THE GIMBAL CONFIGURATION: YAW GIMBAL INSIDE,
PITCH GIMBAL, ROLL GIMBAL OUTSIDE, AS SHOWN 1IN FIGuRE (7- 1-8). Acarn,

OBTAINING THE ORIENTATION OF Bj WITH RESPECT TO Pl, FROM INSIDE GIMBAL

ANGLES TO QUTSIDE, ONE OBTAINS THE MATRIX EQUATION,

B] = M{Gy) MP(Gi)MY(GS)Ei : _ (7-8)

UsING THE ROLL, PIiTCH, AND YAW MATRICES of Eas. (7-1), (7-2), ano (7-3) ThE
FOLLOWING MATRIX IS5 OBTAINED FOR A ROLL OUTSIDE GIMBAL PLATEORM. .

B cG; cGg cGj sGg -5G} 2
8y =] sG, sGj ¢Gg - cGy sGy 3G SGj sGy + cGé G G, ¢Gj Pp
B3 cGo: SGi CGg + 3Gy SGg Gy G} G = G, ¢Gg <Gy ¢Gj / \p3/ (7-9)
As BEFORE, SETTING P] = Bj AND Fj = P, THE MATRIX OF F1GURE (3-2) caNn BE

equatee To Ea. (7-8). UsiINg THE PROPERTY OF EQUALITY OF THE ELEMENTS OF
EQUAL MATRICES, THE EULER ANGLES AND GIMBAL P!CKOFF ANGLES FOR THE EULER SE-
QUENCE YAW, P1TCH, ROLL, AND ROLL OUTSIDE GIMBAL PLATFORM ARE:

o _
6 = 6 | | (7-10)
¢ = Go — _

FROM THE ABOVE CONSIDERATION AND Ens. (7-7) anp (7-10) THE GENERAL STATEMENT
CAN BE MADE THAT: S ] .

FOR A GIVEN GIMBAL CONFIGURATION, THERE EXISTS A UNIQUE EULER ANGLE SE-
QUENCE SUCH THAT THERE WILL BE A ONE-TO-ONE CORRESPONDENCE BETWEEN THE GIMBAL
PICKOFF ANGLES AND THE EULER ANGLES OF THAT SEQUENCE.

THUS, THE DIRECTION COSINES REQUIRED FOR COORDINATE TRANSFORMATION CAN
BE COMPUTED DIRECTLY FROM THE GIMBAL PICKOFF ANGLES,
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GYROS

- THE ORIENTATION OF THE MISSILE HI?HIRESPECT TO THE LOCAL HORIZONTAL
FRAME CAN BE OBTAINED BY MEANS OF GYROS, VARIOUS COMBINATIONS OF TWO TWO-
DEGREES-OF-FREEDOM GYROS {THE SPIN AXIS OF ONE SLAVED TO THE LOCAL VERTICAL,
AND THE SPIN AXIS OF THE OTHER SLAVED NORMAL TO THE LOCAL VERTICAL) WILL BE
CONSIDERED IN THIS REPORT, THAT 1S, COMBINATIONS OF A VERTICAL GYRO AND A
DIRECTIONAL GYRO WilLL BE CONSIDERED. ' '

THE DIFFERENTIAL EQUATIONS oF (3,26} RELATE THE ANGULAR RATES OF THE
REFERENCE FRAMES, THE EULER ANGLES, AND THE EULER ANGULAR RATES. WHEN USING
THESE DIFFERENTIAL EQUATIONS TO DETERMINE THE ANGULAR RATES OF ONE REFERENCE
FRAME KNOWLEDGE OF THE COMPONENTS OF THE ANGULAR RATE OF THE OTHER REFERENCE
FRAME AND THE SET OF EULER ANGLES, OR THE SET OF EULER ANGULAR RATES (BUT.
NOT NECESSAR(LY BOTH OF THE LATTER SETS, SINCE THE ANGLE CAN BE OBTAINED
FROM |TS RATE BY AN INTEGRATION) IS REQUIRED. WHEN USING THE DIFFERENTIAL
EQUATIONS TO DETERMINE THE EULER ANGLES, THEN BOTH SETS OF VHE COMPONENTS
OF THE ANGULAR RATES OF THE TWO REFERENCE FRAMES MUST BE KNOWN., A RESUME
OF SEVERAL GYRO COMBINATIONS USED FOR THE ESTABLISHMENT OF AN ANGULAR
REFERENCE FRAME !S GIVEN IN REFERENCE 1,

CONSIDER A SLAVED TWO-DEGREE=OF~FREEDOM GYRO, SUCH AS SHOWN IN FIGURE
(8~1). EVEN THOUGH THE ROTOR HAS THREE ANGULAR DEGREES OF FREEDOM WITH
RESPECT TO THE GYRQ CASE, THE PLANE OF THE INNER GIMBAL RING, WHICH CON-
TAINS THE ANGULAR MOMENTUM VECTOR Of THE ROTOR, HAS ONLY TWO ANGULAR DE-
GREES OF FREEDOM WiTH RESPECT TO THE CASE. THE Two Fj; VECTORS IN THE
PLANE OF THE PLATFORM LOSE SIGNIF ICANCE WHEN THE PLATFORM 1S CONSIDERED
AS A GYRO; FOR THESE VECTORS NOW LIE N THE PLANE OF THE GYRO WHEEL WHICH
IS SPINNING AT A HiGH RATE. CONSEQUENTLY, THE REMAINING AXIS, WHICH I3
ALONG THE ROTOR SPIN AXiS, 1S THE SIGNIFICANT AX1S, THE TWO ANGLES WHICH
SPECIFY ITS ORIENTATION ARE, OF COURSE, G, AND Gj. THE THIRD ANGLE; Gg,
IS THE TIME INTEGRAL OF THE ROTOR SPiN RATE AND 1S NOT USED.

ATTITUDE ANGLES UsiNG AN EasT=-SLAVED GYRO AND A VERTICAL
SLAVED GYRO WiTH PrTcH=-OuTsipE GIMBAL

THE ATTITUDE ANGLES OF THE MISS!ILE CAN BE OSTAJNED BY TWO SLAVED TWO-
DEGREE~OF =FREEDOM GYROS IN THE FOLLOWING MANNER. CONSIDER THE GYRO GIMBAL
CONF |GURATI1ONS AS sHownN IN FIGURE (8-3) HAVING A PITCH OUTSIDE GIMBAL,

THE TRANSFORMATION MATRIX IS THE SAME AS FOR A STABLE PLATFORM AND 13
civen By Ea, (7-5) as

H [€6yyCBsy = SGsyGoySGiy_//CGoySagy + CGsySGoySG, //-5G <Gy

Bo -sGgy Gy CGiyCGgy o | sGiy .

B3 SGoyChg, + SGgy5GiyChyy_//SB0ySBsy - B¢, SGy,CGoy /Gy ctyy
- ‘ . ' (8?1 ) '
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FOR A VERTICAL GYRO, THE THIRD COLUMN OF THIS MATRIX EQUATION HAS SIGNIFt-
CANCE, THAT 15 : o

Fyely - . (8.2)
anp uence sy Eas, (8.1) ano (8.2),

';1.- __33 = sGo;éG'v = 513 RO ‘ - (8.3)

By . E3 = Gy, = B3 ; (8.1)

33 . E3 = Gy, CGy, = B33 ' (8.5)

THE ORJENTATION OF THE Bt FRAME WITH RESPECT TO THE LOCAL HORIZONTAL FRAME
usING THE EULER SEQUENCE y, @, © 1S GIVEN WiTH F IGURE (3-1) as

'3'1' fcOc P-5 WsesP cOsY + ¢ w{sos;d'_'_ -s0 cff "EI
Bp ~sY cf ey | ¢ G, (8.6)
By sOc ¥+ s¥ sPco sosY -c¥’sfce ¢9c¢ X '63 -

Fic. (8-2) Two-DeGret oF FREEDOM VERTICAL GYRo WiTH PiTcH GimsaL OuTsioE,
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By Ea. (8.6)

Eirf 3y = -secp : - (8.7)
32 . 32 = 5¢ (8.85
33 . E3 = cocf t8-9j

Two oF THE EULER ANGLES ARE THE GIMBAL PICKOFF ANGLES, fFor 8y Eas. (8.4~

8.8) ano (8.3-8.7) , .
G, = ¢ | (8.10)

Gyy = © (8.11)
IT 15 TO BE OBSERVED THAT TO FULFILL THE INITIAL ASSUMPTIONS I[N DERIV~
ING THE DIRECTION COSINE MATRICES FOR THE $IX EULER SEQUENCES THAT THE B]
FRAME SHOULD BE ORJGINALLY ALIGNED WITH THE Pi FRAME, l1.E. Bi = P10 = 82 =
PQO’ AND B F 0* HOHEVER, FOR CONV;N]ENCE, TﬁE Pi AXES ARE CHANGED ARQUND
WHEN CONSI ERIN THE HORIZONTAL GYROS, WiTH THE ROTOR AXIS TAKING ON THE
SUBSCRIPT CORRESPONDING TO THE Ei SUBSCRIPT OF THE INITIAL ORIENTATION,
By ADOPTING THIS CONVENTION, THE PREVIOUSLY DERIVED TRANSFORMATION MATRICES

CAN BE UTILIZED,

CONSIDER A DIRECTIONAL GYRO AS SHOWN IN Ficure (8-3). THE TRANSFORMA-
TION MATRIX IS FIRST A PITCH, S

By = Mp(Gsi) PiH ' (8.12)
SECOND A ROLL, Bijp = My{(Giy). 814 (8.13)
AND THIRD A YAW, Bt = M{-(GoH) Bio : (8.14)

By Eas. (8.12), (8.13) ano (8.14), oNe oBTAINS
_Bi - Mv(é'onMR(GiH)MP(GsH);éH (8.15)

Ea. (8.15) correspoNDs To THE EULER SEQUENCE @, ¢,WP’ANO BY FiGure 8-1

B, <:G0,.|c:(5;sH + SGoy SGiy SGgy [8GuCGyy J-CG sG y, + $GosG;cG  \ /Py
By [= | =SGouCGgy + CGop SGiy SGgy L8, Ch;SCokSGay + CCopsC 1Bs 1y | Poy
E3 CG‘HSGSH Z;éGiH_7 CGEHCGSH P3H.-

(8.17)
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THIS GYRGO IS ERECTED SUCH THAT THE SPIN AXIS INDICATES THE LOCAL NORTH
DIRELCTION, THEREFORE,

FéH =_ﬁé (8'17)
sy Eas. {8.16) ano (8.17), : _ ’

EI ..32 = SGOHOGFH = 512. . , (8018)
By . Bp = CGoucGiy = 822 | . (8.19)
53 .'32 = SGiH =_B32 (8o20)

THE DIRECTION COSINE MATRIX BETWEEM THE BODY FRAME AND LOCAL HORIZONTAL
FRAME 15 GIVEN AS .

G G G
_ ! 2 3 (8.21)
BI 511 312 313 . .
By By B B3
By 831 ®3 ®33

Tue seconp corumn of Ea. (8.21) ts siven sy Eas. (8.18), (8.19) ano
(8.20); anp THe THIRD coLuMn oF Ea. (8.21) is aiven ey Ees, (8.3), (8.4)

ano (8.5).

THE DIRECTION cosinEs oF Fa., (8.21) aRe aIvENn BY Ea. (8.16) ror vHE
EULER SEQUENCE Y, @, ©. USING THE PROPERTY OF THE COSINE MATRIX THAT EACH
ELEMENT IS EQUAL TO ITS COFACTOR, AS DEVELOPED IN Ea. (1,13), THE FiIRrsT
" coLuMn of Ea, {8.21) 1s civeEn By Eas. (1-13) as,

I

311 322533 - 823332

813332 - 812533 . ' (8.22)

821
B31 = BiaBa3 = Bi3Pa2

EXPRESSING THE FIRST coLumn ofF Ea. (8.21) IN TERMS OF THE VERTICAL AND
HOR IZONTAL GIMBAL PICKOFF ANGLES aIvEN BY Eas. (8.3), (8.%4), (8.5) ano (8.13),

(8-}9): (8.20)’

= (CGoHCGiH)-(CGOVCGIV) + stvsGiH

[#:]
—
—_

1

w
no
s

L

= 5G,,6G],5Giy - SGouCGiHCGoyCG]y o (8.23)

Lui]
[
—
#

= (SGoHCG!H)SGiv + SGQVCGTvCGoHCGTH
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Ficure (3-6) SHOWS THIS GYRO PAIR AND THE CORRESPONDING MATRIX,

EquaTinG MATRICES oF Ea, (8-6)(For THEy; @, O stqueNcE) THE MATRIX
ofF FiGure 8-3, AND THE EULER MATRIX WITH FiGURE 3-2 (ror Tuzw po-i 9
SEQUENCE )

| cOcy ~sy sos@ cst + ciy s0sg -30c¢)
= ~s¢ € cpcy S
(sOCw + s¥sPc sOsp -cy sfcd - coch Sy, B,

- sGoHeGiy 'SGovéGiv

. ¢GopcGiH| SGiy (8.24)
%sGoH cGOVcG i

- (g R L

EQUATING ELEMENTS OF THE SECOND RON, SECOND COLUMN

cGoHcGchGOVcle + sGj,sGiy
= | sGoyCGiysGiH = S GgHEGIHCGoyE Giy
SGOHCGEHSGEV + SG CG CG HCGIH

CQC’(&" = € GoucGiH .
8.2 .
¢ ¥ = cGyHeGiH ( 5) '
Gy
sinceE B = Gi.
SoLVING (8.25] FOR "¢~ AND REWRITING (8-10) ano (8-11)
"¢ = arc ¢ CGoHCGTH | (8.26)
cGiy
¢ = Gy
6 =6
ov

THus THE EULER ANGLESj-, §, AND O CAN BE OBTAINED USING THE PICKOFF ANGLES,
Givs Govs Goy AND Giy.

THE' EULER ANGLES FOR THE SEQUENCE /1ot ) $ ARE OBTAINED FROM THE LATTER TWO
EquaLITIES oF Ea. (8.24). EQUATING ELEMENTS OF THE THIRD COLUMN, ONE OBTAINS

'5F94 = - sGoyCGiy (8-27}__
éﬁ Cpgq = S Givl . tB.EB)
c@ Cpgr = Gy, CGy, (8.29)
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! D
Giy © B
/ Goy
. 'DIRECTIONAL {NORTH) GYRO ' PITCH OUTSIDE VERTICAL
YAW GIMBAL OUTSIDE ' GYRO
Y= ¢! I‘:'CGOHCGh-]’
cGe .
g = G‘jv ¥ |
Q= Gov
For Eucer scauence ( , @, )
"51 CGOHCGEHCGOVCL:?V + SGoHCG 1 =5G,chTy
SG;VSG;H
_8.2 SGOVCG‘I‘VSG‘iH - 5G0HC(J;H SG_;V
SGoHCGiHCGOVCGiv
83 SGoHCGTHSGy * -sGoH ¢GgyCGiy
SGOVCGIVCGoHCGiH

Fia. {8-3). Gyros For VeHicLE Requiring 90° PiTch,
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Frou Eq. (8.27)
K1 = arc 5 [5GoycGiy 7. : | (8.30)
Divioine Ea, (8.28) ey (8.27), " ‘
TAN § = TANG SECG,, | (8.31)

E = ARC TAN EANG;VSECGOVJ

DiIvIDING THE ELEMENT OF THE F{RST ROW, SECOND COLUMN, BY THE ELEMENT OF THE '
FIRST ROW, FIRST COLUMN, AND EQUATING IT TO THE CORRESPONDING ELEMENT RATI!O
OF GIMBAL ANGLE MATRIX, THE FOLLOWING IS OBTAINED,

TAN Y = sGoHCGiH
- - L] - L . (8-32)
CGoHCG EGyCGly + 3G SGiH
TANﬂ? = 1 ‘ v

anoHcGOVCG]V + sG;vcsceoHTANGiH

THE HEADING ANGLE J CAN BE OBTAINED FRoM Ea. (8-32)

ATTiITUDE ANGLES Usineg EAST-SLAVED AND VERTICAL=-SLAVED GYros

CONSIDER THE GYRO COMBINATION AS GIVEN IN Fiaure (8-}, THE posiTIVE ROTA-
TIONS ARE AS SHOWN:

Fia. 8.3A., Boby Ax1s AFTER FIRST ROTATION.
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Fie. 8.3c.

BoDy Axis AFTER THIRD ROTATION.
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Br Eas. (8-33), (3-34), ano {8-35),

84 CGoHcOiy  SCoHCOsy + SGsHCBoH  SGjHSGsHSGoHOsH) / F1n

B -SGoHCGiH CGoHCGsH ~SGoHSGiHSGsH-CBoHSGIHCGSH FaH (8-36)

'53 | SGTH -cGiHsGsH ¢GiHCGsH F3H — )
SINCE THE ABOVE GYRO 1S SLAVED TO THE'E1 (vocaL east vECTOR) (8-37)
B = Py -

By Eas. (8.36) ano (8.37)
By -8 = COoycliy = oy

B+ B = -sGoucGiy = 8 (8-38)

83 . G} = sGiy = B3]

THUS FOR THE GYRO PAIR GIVEN BY FIGURE (B-4) THE FIRST COLUMN OF THE DIRECTION
COSINE MATRIX 15 GIVEN BY Eq. (8-38), THE THIRD coLumn civen By Ea. (8-3),
{8-4), ano (8-5), AS BEFORE, AND THE SECOND COLUMN BY THE FOLLOWEING RELATIONS
OBTAINED FRoM Ea. (1-13) “

B2 = 323331"‘ Bé1333
811833 = 813831 (8-39)

Bon

Bip = Bi3f21 - By1P23

THE GYRO PAIR GIVEN BY FIGURE 8-3 CAN PITCH GO° WITHOUT GIMBAL LOCK; HOWEVER,
IF 17 RoLLs 90°, GIMBAL, LOCK WILL OCCUR IN BOTH GYROS,

THE GYRO PAIR GIVEN BY FIGURE 8-& WILL "HAVE GI{MBAL LOCK ON THE VERTICAL

GYRO IF IT ROLLS 90°, OR GIMBAL LOCK ON THE DIRECTIONAL GYRO IF 1T PITCHES
90°. : -

L

THE ATTITUDE ANGLES FOR THE GYRO PAIR OF FIGURE 8-# CAN BE OBTAINED BY
THE FOLLOWING EQUALITY,

cocy sy sOsf cOsy + cYsesp -secy
-sYcP efey s§ =
sOc¥ "+ sY sPc®  50sY" -cYrsPco cocg /- v, B 0
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CGouGiy  5GjySGin + SGouCGiHGoycGiy ~5Goy CGiy

-sGoueGiy  CBouCGiHCOoyCaiy + SGoycGiySGin SGiy = .(8,ho)
sGin $GoyCGiySGoncOin ~CBoncinsGiy ~ SGovCC)y/
core & cOsy S-S

sfsocT-cfsF= sy eas@ + cfeg” sfee
Foscg +og Domi BT do/ Toels B
THE EULER ANGLES FOR THE SEQUENCE § , @, © ARE:
$= Gy (8-41)

0 = Gy T ' L | (8-—1-]-2)

AND .

¢ Y = cGyeGiysGoyCGiy + SGOVCG“SGFH
cosGj,, '

c Y = CGoHCGfHSGov o+ sGOVsG;H ' : ' (8'h3)

THe EULER ANGLES FOR THE SEQUENCE ¢, §, 191 arE OBTAINED FROM THE SECOND TWO
EQUALITIES oF Ea. {8-%0) ano are

Yo+

g

THE HEADING ANGLES ¥ I3

ARC 5 5GgyCGly ' | (8-hu)

1]

ARC TAN TANG},SECGy, ' ~(8-45)

TaN' § = sGiysGIH + $GoHCG i HCGoy <Gy _ ' ' (8-46)
tGonreGiy -

ATTITUDE ANGLES UsING A Hor1zoNTAL GYRo AND RoLb QuTsIDE VERTICAL GYRO

CONSIDER A VERTICAL GYRO WITH THE GIMBAL CONFIGURATION OF FIGURE 8‘5.
THiS GYRG HAS A ROLL OUTSIDE GIMBAL, THE TRANSFORMATION MATRIX 15 GIVEN BY

mn, i1t

Eq. (7-9) By ADDING THE suBSCRIPT "v" AND SETTINGS Py = 63

By CGyCGgy ' Gy sGsy -sGiy Flv

Ee = | sG,,5G;,8G,, -cG,,sGg, 3Gg,5Giy5Gyy + CGqyCGgy sGoyCGiy | Poy

'E3 cGg,8G; 6y, + SGg,5Gg, €Gy,5G;,SCg, -sGoch3V8 ;vacGiv 33
{C-47
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By FIGURE 3~2 THE THIRD COLUMN AS A FUNCTION OF THE EULER ANGLES ARE
EQUATED To coLUMN THREE oF Ea. (8-47)

SveH

By . -P3 =By = $G,,c6;, = s@c»@-u f8-1i8?

By . F3 =833 = CGyychyy = cfe o4

HENCE FOR THE EULER SEQUENCE ¥, +oF, $, tHE ROLL ANGLE.g AND THE ELEVATION
ANGLEYSH 1S :

¥+ = Gy,

ﬁ = Ggy

IF THE HORIZONTAL GYRO OF F{GURE 3-2 IS USED, THE SECOND COLUMN OF THE
TRANSFORMATION MATRIX IS

-EI . -62 = SGQHCGiH = 312

-§2 . _62 = CGOHCGEH = 322 i . (8'3)) )
83 . 62 = -SGOH = 532

THE FIRST COLUMN OF THE DIRECTION COSINE MATR!X 15 GIVEN 8Y EQ, 1=13 as

®11. = Pagf33~ B23%32

B8

21 = B13832" 812833 (8-51)

B3t = B12823~ B13B22

Thus, By The rewaTions (8-48), (8-50), ano (8-51), The MaTRIX oF Figure 8-5
iS OBTAINED. THE ATTiTUDE ANGLES ARE OBTAINED AS BEFORE BY REPLACING THE
GIMBAL PICKOFF MATRIX oF Eq. (8-40) wiTH THE GiMBAL MATRIX OF FiGURE (3-4)

s0cy - sysesf  cOsy- + cipsosf  -socd

-5y cP cPed - sg =

sOc Y + s sPc®  sOsy - -cy sfco cocf %; g, ©

bGoHcGiHcGochiv + SGOVCGiVSGOH sG, Gy -SGpy

sGivGoH - SGoHCGIHCGoy BTy CGoHCGIH  SGoyCGiy = (8-52)
SGoHCG Sy Cay + SG7 COoHCGiy  =5Goy €GoyCGiy |
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crorcV . ceisy ~svod \
sfsocy - cPsy sy-s6sf + ey sPere
Psrrcy + sPsv Psr@lsy -sPey g?q-@-l v, 0, ¢

. (I
THE ATTITUDE ANGLES FOR THE SEQUENCE ¥ -,4O4, E ARE GIVEN BY Eq, 8-U9,
THE HEADING ANGLE IS OBTAINED FOR Eq. 8-51 as
SGoHCC1H

CGOHCGEHCGOVCGTV + SGOVCGiVSGOH

TAN ¥~ =

OR

TAN 'Y = 1 (8-53).

TANGOHCGOVCGiv +-.:f$Goch;vsl-:cGiH

THE EULER ANGLES FOR THE SEQUENCE ', §, © ARE OBTAINED FROM THE LEFT
EQUALITIES oF Ea. (8-51).

¢ = ARC s (8Gg,cG1y) B (8-54)

6 = ARC TAN {TAN G, 5ECCqy) : (8-55)

TANY = 3Gy sG,, - 5GocG G, <Gy, (8-56)
~CGontGin |

THUS, VARIOUS OTHER COMBINATIONS GF VERTICAL AND DIRECTIONAL GYROS CAN
SIMILARLY BE ANALYZED.
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G Sa €3
B1 | cGoHcG;H sGyysGip + SGoHCGiHCGOVCGiv 'EGOVCGIV
By ‘SGOHCGFH °G0H°GiH°Gov°Giv"' svacG;VsGm SGiv
33 SGiH SGovceivseoHCGiH - CGoHCGiHSGiv CGoVCGiv
Giy = ¢
Goy = ©

FOR THE EULER SEQUENCE Y, @, ©

Fie. (8-%). Two DeGcrer oF FReepoM Gyro PaIR.
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ROLL OUTSIDE GIMBAL VERTICAL

DIRECTIONAL (NORTH) GYRO,

GYRO YAW GIMBAL OUTSIDE
Gl 32 G3
- r—— - »
B CGOH“GiHCGOVCGiv + SGOHSGiH ~sGiV
5Ggy <G} ySGoH

52 SGiVSGOH - SGOHCG?H
cG_ cG,
oy 1V

CGoHCGiv 'SGOVCGiv

B3 | SGoHTE]1SGoyCGiy +
561y 8C8oncliy

~80gH _cGOVcG;V

Fia. (8~5). DirecTioN COSINE MATR

1% FROM VERTICAL AND

DirEcTIONAL (NORTH) GYROS.
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« G=1=- _'.= . . O=1= Be =M M M ®.
Fig. 8-1-4 B Moy M M, P anD Fia. 8-1-F B: o M M P
G, = © Gy =¢ |
v For sgquence (¥ , O, @) I ForR seQuence (@, ¥ . ©)
Goy = 9 Gy = ©
Er = COS cGoHcG;!_|srs<:G;V
181 = G;V
g =q,
— - 5
g, Gy 2
5 CGoHCG]H -SG;HCGOVCGEV - sGo'chivsGoHcG;H —sQiV
8o 'SGiH CGoHCGOVCG]V + SGivseoHCGiH SGovCGiv
B, sG_,,cG. ¢G_.cG. sG cG. - sG. sG. G . cG.
3 oH 7iH | TToHTTiH oy v s ivs (H iy
GIMBAL LOCK WHEN G = 90°
G'. = 90°
I
Fre. 8-6.
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Figure 8-1-A (Bi = MRMPMYPi) ano FiGure 8-1-E (a. M MPMRP )
Gi\f = g GoH = g
For seauence (¢, 9, @) i For seaquence (P, 6,7¥ )
Gov = oy = v
— -1
g = oS (CG:HCGoHSECG )
ot -,
T -
ov
6 G, G3
CH CGiHCGoH -CGiHSGoHCGovCGEv - sGochivsgiH -sGi
B, 'CGIHSGoH CGiHCGoHCGovCGiv f sG SGTH SGdVCGiv
B Gv- & - [ - Y L . -
B3 52N CGlHCGoHSGovc_Gw 5GivfslHSGoH CGOVFGIV
GIMBAL LOCK WHEN Giv = go°
GTH 90°
Fia. 8-7.



Figure 8-1-A [s.' = MRMPMYPi) aND FIGURE 8-1-C (a; = MM M_P.
G.IIV =B GEH = §
For scauence (W, ©, @) FOR SEQUENCE (8, ¢, @)
Gov = Gon = ¢
_ -1
[ = SN (SGiHSECGIv)
B = G
g = Gy
) i 85 G3
® CGOHCGiHCGovCGTv * SGOVCGIVSGOHCGiH SGiH —S_Giv
— o o %
By | SG18ey Gy = 367,58 Cy - Conlin T=C0vCiy
B sG,psG ¢G, + sG, ¢G <G, -sG G, |G ¢G.
3 Iﬁ ov IV iv. oH 1H oH 1H ov v
GiMBAL LOCK WHER G;, = 90°
GIH 90°
Fic. 8-8.
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Fiaure B8-1-A (Bi = MRMPMYPI) anp Fraure 8-1-D (BI = MMM P?)

YRP
- Gy = ¢ .
For SEQUENCE (¥, 6, #) For seauence (8, @, V)
= GOH = ¢’
-1,
= SIN (SGoHCGiHSECGiv)
T 4 ry
1 P 3
B G, cG <G+ G, sG G ¢G, -sG.
® oy 1y _ c. iv iHe= oH iH "
B SGoHCGiHCGOVCGiv - SGEVSGI CGoHCGiH SGOVCGiv
B G+ ) -5G_ cG ¢G
Tv iH tH ov v

GIMBAL LOCK WHEN Gw

= 90°

= 90°



Ficure 8-1-B (B; MPMRMYPI) AND Figure 8-1-E (Bi MYMPMRPF)
Gy @) GIH e
For seQuence (¥, @, ©) For sequence (@, 6,y )
Gov 9) GoH =
- -1
7 TAN E-TANGOHCGOVCGI\I' -(TANGiHsGiv)saceoH]
o+ sm'](sGochivJ
=
E TAN (TANGivSECGOV.)
G.l 62 33
B CGEHCGOH —cGiHsGoHcGochiv - SG_'IVSGiH "SGOVCGE
® "CGEHSGOH CGIHCGOHCGovCGiv + SGOVCGIVSGiH SGiv
B 5G. cG. cG . sG. G ¢G. cG. sG  cG,
3 1H iH oHs v s ov® iVCGIHS oH CGovc RY
GiMBAL LOCK WHEN Gy, = §0°
Giy = 90
FIG. 8-100
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Fieure 8-1-B (B; = MPMRMYP]] anD Figure B=1aF (8; = MMMP;)

G;V = ¢ lH - w
For scauence (¥, @, 9) ! ror szeuence (g, ¥, 9)
GOV = @ _ GOH = @
- -1 - -
@ = TAN [g TANGiHcGochiv)sscGoH TANGOHSGiv]
o = SIN'1(5G0VCG;V) '
g = TAN-](TANGIVSECGOV)
) 5, S
® cG.oHcfsiH : 5$G;HcGoch;v E sGcHCGiHSGiv -SGOVCG;V
B2 -SGIH CGOHCGEHCGGVCG'IV+ SGOVCGiVSGoHCGiH SGTv
B3 SGorCin CGquGiHSGiv - 8Go,cG SGy CGovcgiv
GIMBAL LOCK WHEN G;V = 90°
Gjy = 90°
Fic. 8-11.
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Fioure 8-1-B (B = MMM, PF;) anp Froure 8-1-D (B; = M,MgM.F;)

Giv = ¢
FOR SEQUENCE (¥,
Goy = ©
@ = cor”) [(:OTG cG_ cG,
oH "ov i

-1
SIN (SGOVCGTv)

b &

=1
TAN (TANGIVSECGOV)

G

g, o) M
GoH

g
= ¥

+ (uNGiHsGiv) cscGoH]

}FOR sequence {9, @, ¥}
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1 G2 83
By CGOHCGIHCGOVFFEV +  8Gy sGiy sGoHeGiy -5Gy, cGyy
Bz SGOHCGiHCGOVCGIV - SGovCGIVSGIH [,CGOHCGIH SGTV
B3 SGOHCGEHSGEV * SGOVCGIVCGOHCGIH -SGLH ?GOVCGEV
GiMBAL Locx wHeEN Gi, = 90°
Gin = 90°
. Fia. 8-12.



Fiaure 8-1-8 (-B.i'

Giv =

GOV

g =

o
jf =

¢

e

FoR scauence (¥, @, 9)

GoH

= MPMRMYﬁ) ano Freure 8-1-C {EI = MRM

YMPPI )

FOR SEQUENCE- (e,¥, @)

-1
coT COTGEH(CGQHCGOVCGi'v + SGIVSGOHH

-1
SIN (SGOVCGEVJ

Tan"] (TaNG; sECG,, )

G, Sy G3
Bi CGOHCGTHCGQVCGW * SGEVSGOHCGEH Sr‘-""’rH -GOVCGT
©2 SGiHCGOVCGiv - 5G'erGi\.'SGf.'JHCGTI-f CGOHCGTH SGiv' '
53 SG?HSGTv + SGovCGivCGoHCGTH : -SGoHCGiH cGoch.
GIMBAL toCk WHEN GJ, = 90°
Gy = 90°
FIG- 8""130
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PART 11

GEOMETRY OF THE SPHEROQID

THE GEOMETRY OF THE SPHEROID AND RELATIONSHIPS BETWEEN THE VARIOUS
REFERENCE FRAMES ARE DERIVED IN THIS SECTION,

EARTH VERTICALS

THERE ARE THREE VERTICALS OF INTEREST WHEN CONSIDERING THE GEOMETRY
CF AN OBLATE SPHEROIDAL EARTH, THESE ARE:

i. GEOCENTRIC VERTICAL
2. GeooeTic {PLuMB-BoB) VERTICAL

3. MASS ATTRACTION GRAVITATIONAL VERTICAL

THESE THREE VERTICALS ARE SHOWN IN FIGURE 9-1,

GEOCENTRIC VERTICAL Wex(@WexRy ) CENTRIPETAL
' ST ACCELERATION TERM

®——PLUMB-BOB VERTICAL

POLAR AXIS/

i , NEWTOMLAN MASS ATTRACTION

-~ GRAVITATIONAL VERTI'GA!..

‘ -‘— — —
° L wzx( wEXRM)

Fia, 9.1 THE THREE EARTH VERTICALS,

PLUMB-BOB VERTICALS

FCGR AN OBLATE SPHEROIDAL EARTH AS SHOWN IN FIGURE 9-2 THE "EFFECTIVE
GRAVITY". ACTS IN THE DIRECTION OF THE NORMAL VECTOR TO THE EARTH'S SURFACE
<Gs. FOR A SPHERICAL £ARTH ASSUMPTION, THE PLUMB-BOB VERTICAL DOES NOT ACT
ALDNG THE NORMAL TO THE EARTH'S SURFACE, BUT ALONG A VECTOR PASSING TO THE
SOUTH OF THE EARTH'S CENTER (IN THIS HEMISPHERE), '
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THE EFFECTIVE "GRAVITATIONAL FORCE" MAY BE WRITTEN AS, SEE
EQUAT I ON (11-hh) ]

FNG - HGE X (BE XﬁM) =‘F-GE,

WHERE ?NG 15 THE NEWTON{AN MASS~ATTRACTION GRAVITY. FOR A SéHEROlDAL

EARTH FNG M%EE x (W, x R‘j}n Fq 3 ,

AND THE LOCAL PLUMB-BOB VERTIGAL WOULD BE ALONG - Eé, THE NORMAL TO THE
SPHEROID,

FOR A SPHERICAL EARTH THE "EFFECTIVE GRAVITY" ACTS ALONG A DIRECTION
TO THE SOUTH OF THE NORMAL TO THE SURFACE AS SHOWN IN FIGURE 9=3. THus
THE PLUMB=-BO® VERTICAL FOR A SPHERICAL EARTH ASSUMPTION 1S NOT NORMAL TO
THE TANGENT PLANE TO THE SPHERE AT THE POINT,

MASS ATTRACTION GRAVITY VECTOR
' wEx(wExR ) CENTRIPETAL
‘i\ j Eé PLUMB B0B VERTICAL

.

£l

EFFECTIVE GRAVITY VECTOR
PLUMB BOB FPERPEND[CULAR TO
EARTH'S SURFACE

m
w

CENTER OF

C
EARTH ////’

-0 x( XR,,) CENTRIFUGAL

F16. 9.2. OBLATE SPHEROIDAL {EARTH PLuMe BoB VERTICAL)
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MASS ATTRACTION GRAVITY

PLUMB. BOB VERT!CAL
" PERPEND ICULAR TO EARTH'S SURFACE

"~ EFFECTIVE GRAVITY

O L © @ R)
Fia. 9.3. SpPHERICAL EARTH {PLuMB-BoB VERTICAL),

DISCUSSION OF EARTH COORD|NATE SYSTEMS

THE EARTH 1S BETTER APPROXIMATED BY AN OBLATE SPHEROID (AN ELLIPSE OF
REVOLUTION ABOUT THE POLAR AXIS) THAN BY A SPHERE; CONSEQUENTLY, 1T WAS FELT
THAT A SPHERDIDAL COORDINATE SYSTEM RATHER THAN A SPHERICAL COORDINATE SYSTEM
COULD BE USED TO ADVANTAGE, THE ANGLE BETWEEN THE NORMAL TO THE TANGENT PLANE

AT A POINT ON THE SPHERO!D AND THE EQUATORIAL PLANE IS GOEDETIC LATITUDE
(sEE Ficure 9-4), THESE TWO ANGLES UNIQUELY SPECIFY THE CRIENTATION OF THE
NORMAL TO THE TANGENT PLANE AT A POINT ON THE SURFACE OF THE SPHEROID.

SINCE THE ALTITUDE OF ANY POINT ABOVE THE SURFACE, {OR BELOW), 1S
MEASURED ALONG THE NORMAL FROM THE SURFACE TO THE POINT, LT 1S VERY SIMPLE TO
LOCATE THE POINT IN TERMS OF ITS GEODETIC LATITUDE, LONGITUDE, HMEIGHT ABOVE THE
SURFACE, AND SEMI1~MAJOR AND SEMI|-M[NOR-AXES,

IN ORDER TO LOCATE A POINT IN INERTIAL SPACE, A SET OF INERTIAL VECTORS
71, Tpy 1o WAS CHOSEN WITH ORIGIN AT THE CENTER OF THE SPHEROCID, THIS SET IS
ORTHOGONAL AND RIGHT HANDED. THE 1, VECTOR WAS CHOSEN ALONG THE POLAR AXIS
OF THE EARTH AND WAS DIRECTED TOWARD THE NORTH PoLE., THE OTHER TWO VECTORS
WERE TAKEN IN THE EQUATORIAL PLANE, )

A SECOND SET E, oF uNIT VECTORS, ALSO ORTHOGONAL AND RIGHT-HANDED, WAS
FIXED TO THE ROTATING EARTH WITH ORIGIN AT THE CENTER OF THE EARTH,

14



THE VECTORJE3 WAS TAKEN TO BE COINCIDENT WITH I3_ THE EXTENSION ALONG THE

€y VECTOR INTERSECTS THE EQUATOR AT THE GREENWICH MERIDIAN (ALTHOUGH THIS
15 NOT NECESSARY).. fNITIALLY Tl = E]’ g = Ees AND HENCE, AT TIME T THE

ANGLE BETWEEN T) AND €1 5 (T,

THE THIRD SET OF UNIT VECTORS (W), ALSO ORTHOGONAL AND RIGHT-HANDED,
IS A SYSTEM MOVING ON THE SURFACE OF THE SPHERO(D, THE TANGENTS TO LINES
OF CONSTANT LATITUDE AND CONSTANT LONGITUDE AT THAT POINT GIVE THE DIRECTIONS
OF LOCAL EAST AND LOCAL NORTH RESPECTIVELY, THESE TANGENTS LIE IN THE TANGENT
PLANE WHICH 15 PERPENDICULAR TO THE NORMAL AT THE POINT, THE SET WAS CHOSEN
S0 THAT: Hy IS ALONG THE TANGENT TO THE LINE OF CONSTANT LATITUDE IN THE
DIRECTION OF INCREASING LONGITUDE; Hy IS ALONG THE TANGENT TO THE LINE OF
CONSTANT LONGITUDE IN THE DIRECTION OF INCREASING LATITUDE; AND H3 IS
DIRECTED ALONG THE OUTWARD NORMAL. THUS, Hy IS TO THE EAST AND H; IS ToO
THE NORTH., THE FOURTH SET OF UNIT VECTORS USED WAS (G,), A RIGHT-HANDED
ORDTHOGONAL SET, THE THREE VECTORS Gy, Eé,”Eé, ARE ORIENTED WITH RESPECT

TO THE W, FRAME THROUGH A YAW ANGLEYg/y — Tuu3, _3-L5 N DIRECTION OF W

> _ \ _ 3
{ NORMAL TO TANGENT PLANE), AND THE TRANSFORMATION"IS G| = M, ( ¢E/H)HI.

POLAR AXIS MISSILE CENTER OF MASS
AT ' '
3
’l= CONSTANT "\ .
o (NogTH) @/ /€2 (wormaL To
_ SPHEROID }
Gzl
373
Hi{ £AST)
GEOCENTRIC
LATITUDE
A » Ep
L I ] .
A L = CONSTANT
/ GEODETh
% LATITUDE 633

EQUATOR! AL PLANE

Fi1a. 9.4, OCTANT OF SPHEROIDAL EARTH.
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ANGULAR ORIENTATION OF REFERENCE
FRAMES RELATED TO THE SPHEROID

THIS éR@NSFORMATlON IS OBTAINED EASILY FROM FIGURE 9-5 BELOW:

L=

373

Fia, 9.5, TRANSFORMAT)ON BETWEEN EARTH FIXED FRAME AND.INERTAIL FRAME,

51 cos W, T SIN W -0 P
S _ {9-1)
Ep |= {-SIN u%T cos wET 0 PN :
L E. 0 0 1 T
\ 3

THE ASSUMPTION IS MADE THAT THE ANGULAR VELOCITY OF THE EARTH ABOUT
ITS POLAR AX15 15 A CONSTANT,

TRANSFORMATION BETWEEN EARTH'S REFERENCE FRAME
(AT CENTER OF LARTH) AND THE LOCAL HORIZONTAL
FRAME FOR SPHEROIDAL FARTH AND A SPHERICAL EARTH

THE COORDINATES OF A MISSILE OR ANY OTHER POINT SUCH AS THE TARGET
OR THE LAUNCH POINT ARE MOST COMMONLY KNOWN IN TERMS OF LATITUDE,
LONGITUDE, AND A RADIAL DISTANCE. THE TRANSFORMATION MATRIX IS THE SAME
FORM WHEN EXPRESSED IN TERMS OF GEODETIC~LATITUDE {,A) AS WHEN EXPRESSED
IN TERMS OF GEOCENTRIC~LATITUDE { AX¥)., THE DISTINCTION BETWEEN THE TWO
LATITUDES 1S DEPICTED (N FIGURE 9-k,

CoNsIDER THE 51 FRAME INITIALLY ALIGNED WiTH THE G, FRAME. THE
FIRST ROTATION IS5 A ROTATION ofF +90° aAsouT Eo {THE EAST VECTOR AT
INTERSECTION OF EQUATOR AND GREENWICH MERIDIAN} AS SHOWN IN FIGURE 9-6.



=M, (90°) T, {9-2)

Gpp | = o 1 0
'631 1 0 0
0E3
POLAR AXIS ‘\\\\\\
. GREENWICH MERIDIAN
i —9 Tty
\*-'-900° | |

IR
Fie. 9.6.

THE SECOND ROTATION 15 A +90° ROTATION ABOUT G,, (THE VERTICAL AT
THE INTERSECTION OF EQUATORIAL GREENWICH MERIDJAN PélNES). (See FIGURE\9-T.)

2 ) = [T 0 Ol G2 =M (90°) B, (9-3)
83p 0 0 1 63,
POLAR AXiS {)a3 = Gpp
+90°
EQUATORIAL PLANE
P)%p =55
~4 "~ VERTICAL AT =0, L=0
' g 631 = 83

, €11
Fia. 9.7.
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"'THE THIRD ROTATION IS A ROTATION ABOUT Goo {THE POLAR Ax158}, FI1GURE 9-6
THROUGH THE LONGITUDE ANGLE L {MEASURED POSITIVELY TOWARD THE EAST),

‘?513 c L 0 312
‘23 | = ° 1 22 | ) T, (9
333 s L 0 3'32

Fia. 9.8.
THE FINAL ROTATION IS A ROTATION ABSOUT THE LOCAL EAST VECTOR G
{seE Fig. 9-9) THROUGH THE ANGLE. 13
ET 2 1 0. 0 /613
Sy = Ty | = 0 cosAsINA 5323 - A 5,4 (9-5)
33}4/ ﬁ3 | 0 -sSINACOS \ '533 |



o

PARALLEL TO \ 3 -
POLAR AXIS—¥ 2} = Hy (NoRTH)

g)—g’ B3 = Gy = W, LOCAL EAST VECTOR

‘733h n'ﬁé
Fia. 9.9
'FI'l P /1. 0] 4] ¢ L 0 -s L
0 eA SsA 0 1 0
4] -sN ¢ s L 0 ¢ L
0 1 0 0 0. -1 T,
1 0 © 0 1 oll=E
g ' 2 (9-6)
DR
H = -5 L c L o} E

¢ L s;\sL ¢ A E

cAC L EAS L -=sA 'EB

THE FINAL ROTATION ABOUT THE LOCAL EAST VECTOR WAS TAKEN [N A POSITIVE
DIRECTION, AND IF THE LATITUDE IN THE NORTHERN HEMISPHERE '|S TAKEN AS

POSITIVE, THEN: .
A= -2 (9-7)
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SussTITUTING EQuATION {9-T) INTO {9-6)

-s L c L 0 El
= -5 ¢ L -s sL ¢ 52 (9-8)
¢c ¢tL c sL s E.
-3
e o= (Wb ) &

IF A SPHERICAL EARTH S CONSIDERED, THEN THE GEOCENTRIC.LAT | TUDE
IS EQUAL THE GEODETIC LATITUDE AND EQUATION (9-8), WRITTEN IN TERMS OF
GEOCENTRIC LATITUDE, A%, i5:

X o=/ st Lo T

_sDwe L -s )\* sLoocAl [ 5] (99)
*c L * |_ * £
c')Pc | c;\ s s}H.. 53

THE FORM .OF EQUATION (9-9) {S OBVIOUS FROM THE MATRIX or EQUATION
(9-8) BECAUSE THE LATTER ROTATION |5 ABOUT THE LOCAL EAST VECTOR ON A
SPHERICAL EARTH, |T SHOULD BE NOTED THAT THE LOCAL EAST=NORTH-VERTICAL
FRAME ON ‘A SPHERICAL EARTH IS NOT EQUAL TQ THE LOCAL EAST-NORTH=VERTI} CAL
FRAME ON A SPHERQIDAL EARTH, SINCE THE SPHERQIDAL EARTH IS FLATTENED AT
THE POLES, THE ONLY MISALIGNMENT IN THE TWO FRAMES 1S IN THE PLANE
CONTAINING THE NORTH AND VERTICAL VECTORS, THE TWO EAST VECTORS ARE NOT
AFFECTED BY THIS ELLIPTICITY, )

x
!

H 2

9.10, SPHERICAL AND SPHEROIDAL EARTH VERTICAL AND NORTH FRAME,
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_ | R
THE TRANSFORMATION FROM THE H, FRAME TO THE K, FRAME [N TERMS OF THE ;
LATITUDE ERROR . N FIGURE 9-10) I's:

K-l (9']0)

By £QuaTions {9-9) anp (9-12), OMITTING THE SUBSCRIPT T, ONE OBTAINS
AS THE PRODUCT OF THE TWO MATRICES,

K1 1

T, | = |[o c() )\) 5() ) =
?3-/ o -5()- )*) ¢ () A*)

TRANSFORMAT ION- BETWEEN LOoCAL HORIZONTAL
FraME AND OTHER KNOWN HOR1ZONTAL REFERENCE
FRAMES SUCH AS TARGET OR LAUNCH POINT FRAME

THIS TRANSFORMATION 15 USEFUL WHEN CONSIDERING THE LOCATION OF THE
TARGET, LAUNCH POINT, OR RADAR=SITE WI!TH RESPECT TO THE MiSSILE, AN
INERTIALLY GUIDED MISSILE MUST "kNOow'" 1TS COORDINATES AS WELL AS THE
COORDINATES OF THE TARGET IN ORDER TO GUIDE ITSELF TO THE TARGET,

THE TRANSFORMATION BETWEEN THE EARTH'S FRAME AND THE LOCAL HORIZONTAL
FRAME FOR A SPHERDIDAL EARTH 1S GIVEN BY EQUATION (9-8).

-5 L cL 0 E‘I
o - -s)c L -s)s L c); E, (9..11_)
c)jc_L c)s;T s) €

ATTACHING A SUBSCRIPT T TO THE ABOVE LATITUDE AND LONG [ TUDE
COORDINATES AND INTERCHANGING ROWS AND CDLUMNS, THE TRANSFORHATION

BETWEEN THE TARGET HORIZONTAL REFERENCE FRAME 'AND THE EARTH'S FRAME 185
GIVEN AS FOLLOWS!:
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I
(1)
-~
—'

w

|
-t

[
ey

[

-
pV
=

. (9-12)

THE TRANSFORMATION BETWEEN THE TARGET .AND THE LOCAL HORIZONTAL FRAMES
I's oaumeo From EQUATIONS {9-11).anD (9- 12) AS:

“sL cL 0\ fst, '-'CLT s A, n:!..rc)T A (9-13)

FI = -cLsA '--sLsA C/l' CI.;'T -sL sAT sLTc;{T
cle A ske A _SA 0 CAT 5/11‘

c (L - I__T) SAT s (L -1L; | -(:/1-r s (L - LT)

| -s s{L - Ly) 5;{5/17 ¢ (L - L.l.)+01czT -s;{c,eT el - LT)+CA5/2r 7,
. . . T
CAS(L - I—T) 'Clsl'r c{L - LT) -+51¢27 CA.CJT C(‘L— - LT) "‘51521. .

THUS, FOR EXAMPLE, WHEN THE LATITUDE AND LONGITUDE FOGR THE MISSILE AND
TARGET ARE EQUAL, EQUATION {9-13) BECOMES THE IDENTITY MATRIX:

-
I

10 0

W= fo 1 ¢l ®

I HIT (9‘1h)
o 0 1

AND THE MiSSILE'S LOCAL EAST-NORTH-VER?[tAL VECTORS ARE ALIGNED WITH THE
TARGET EAST=-NORTH-VERTICAL VECTORS,.



POLAR AX1S
E
AEs

% CONSTANT —\

L=CONSTANT

1 — N
zo/oE _
3 \)@Eom_:nc
LATITUDE

1 B33

O

ml

EQUATORIAL PLANE

Fiag, 9.10a. SeHERoIDAL EARTH GEOMETRY,

GEOMETRY

CONSIDER THE POSITION VECTOR R. FROM THE CENTER OF THE EARTH O TO THE

PROJECTION OF THE MISSILE CENTER OF MASS ONTO THE SURFACE OF THE EARTH ALONG
THE LOCAL VERTICAL (63) of FiGure 9,

WHERE Zg IS A SCALAR DISTANCE ALONG THE POLAR AXiS TO BE DETEhHINED,
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Re 1S THE GEODETIC. EARTH-RADIUS, R* IS THE GEGCENTRIC EARTH-RAD(US, AND
?;'3 15 THE VERTICAL TO A spus:mcm. EARTH AT Tﬂt Pomr L
5

INSTEAD OF 'suoms ALONG THE POLAR~AX!S TO 0 AND THEN ALONG THE LOCAL
PLUMB-BOB. VERTI{CAL B,, ONE MAY SLIDE IN THE EQUATORIAL PLANE A DISTANCE R

IN THE 333 DIRECTION  AND THEN [N DIRECTION OF POLAR-AXIS:

g 3 °F EG35 24 Es + R o RG33+ZG s

= ¥E ~— E = E = : . -
X Ey + YG_ En * ZG €3 (9-16)
TAKING THE SCALAR DOT PRODUCT OF EQUATION (9-16) anp cauation {9-15) BY
E .

3

E ‘? _ _ - L _ i
i = R 3 E3 G3 . 53 (3=17)

ZE = R¥ cos (90° QA*) - Rg cos (90 --A)
ZE =R; sm)\* - R SINA | (9-18)

THE NORMAL PROJECTION OF R. ONTO THE EQUATORIAL PLANE IS OBTAINED
BY DOTTING EQUATION (9-16) BY —633

RES3, - G337 (T e Re T) - T3
= R Ty - Ty - (9-19)

e cos e - )
RE cos - = Rg cos /.

By equaTions (9-18) anp (9-19)

Zg, = R TAN)*' cos) - R s.mbﬁ. (9-é0)
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THE EQUATION OF THE MISSILE MERIDIAN PLANE AT
EARTH (AN ELLIPSE) AT POINT G 1S

z2 2
G + R =
52 Ae
AS SHOWN IN FIGURE 9-11,
% & AXIS

THE SURFACE OFf THE

1 (9-21)

Fig. 9.11. MERIDIAN PLANE GEOMETRY.
THE SLOPE OF THE TANGENT LINE AT G 1S

= 2
pg = - R
§ (9-22)
DR A2 ZG
WERE R cor e (9-23)
G B
AND
P
7 —
D5 = TAN (2+)) = -cor); -82 cq'r)*
DR Al .
TAN * = 2
OR TA >\ 82 AN ) (g-2k)
A
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THUS BY EQUATION (9~20) anD EQuaTion (9-24)

5 = Rz._.'?.g_. TAN)COS)-RE siN )
A

d (4 SIN;\(E§_ 1) RE SIN/AEF , . (9_25)
A

WHERE THE ECCENTRILCITY £ 15 RELATED TO A AND B BY

e =1 -8 (9-26)

THE EQUATION OF THE POINT G ON THE SURFACE OF THE SPHEROID IS GIVEN
BY EQUATION (9-16) as
R* Vel - = - 3 =
£ G3S XG By + YG 52 + ZG E3 . (9—27)
DoTTing EauaTion (9-27) By E, RESPECTIVELY AND UTILIZING EQUATION
(9-G), THE DIRECTION COSINE MATRIX BETWEEN THE EARTH FRAME AND A
SPHER1CAL EARTH GROUND FRAME, ONE OBTAINS

€
XG =R; cos)* cos L

Yé = R; cos)* SIN L (9“28)
28 = R* SINA* .
G .
By EquaTions (9-19), (9-21*) anp (9-28)
3
XG = R_ cosHcos L
E =
YG Re COSASIN L
Zé = R cos)sm)* = R cos)nw)* =
cos)* '
R. g2
E 5 -2
5 IN) | (9-29)

A
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UTiL1ZiNG EQUATION (9-29) WITH THE EQUATION OF THE SPHEROID IN RECTANGULAR
COORD I NATES _

2 2 '
x2G + Y+ 22G e 1 (9-30)
2
A 8

ONE OBTAINS

Ri (cos® Jcos? L+ cos® Jsin L) + Rg gt sine)= 1
2 32 Ai

_OR
RZ cos2 A« RS &2 S'NQ,/a =1
A% At
FACTORING
2
RE/A2 s
RE/AQ I:cos23+ B smz):l— 1
A2
OR
Rg = A2
cos? /a-b 82 sIN® /a »
- 2
A
By equaTion (9-26), 8°/A% = 1 - g2
HENCE
RZ = A2 = a2
0052)+ SINEA-EE sme) 1-€2 sin2 A
OR |

D
[}

€ “E ) Ee):‘ /e : (9-31)
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THE ECCENTRICITY € OF EQUATiON {9-26) MAY BE EXPRESSED IN .TERMS OF
THE ELLIPTICITY F .(OR FLATTENING) OF .THE.EARTH BY THE RELATION GIVEN iIN
REFERENCE , BRowN, R.C., AND PapPas, J. 5. "KINEMATICS OF SEVERAL STABLE
PLATFORMS,™ CONVAIR MR-E-98, 10 SEpTEMBER 1956, FORT WORTH, TEXAS.

€2 = Ae, - 52 = 2 F a F2 . (9'32)
N A2
WHERE _
F = _A-B = _1 (9-33)
A 297.00

FOR THE INTERNATIONAL SPHEROID {HAYFORD),
THE VALUES OF A (THE EQUATORAL SEM| AX1S) AND OF B (THE POLAR SEMI

AXIS) ARE:

A = 20,926,488 r1,
(9-34)
B = 20,856,029 rr. _

ExPAND ING EQUATION (9-31}

Rg =AE-E2 52§|-1/2=AE+;_252)+ 3/8 b Sh)|+. .:.|,

(9-35)

AND USING EQUATION {=32) In {9-35) AND NEGLECTING POWERS OF F GREATER THAN
ONE. '

Re = & E+ F 527\]. (9-36)

AN APPROXIMATE VALUE FOR Zéré -Re S €2 (9-37)

AND EQUATION (9-32) wITH equaTion {9-36)

ZG = - A E+ F 522_—1 s (er - ¢2)

OR
5. = -2arF S), - (9-38)

NEGLECTING POWERS OF F GREATER THAN ONE,
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COMPUT ING THE DIRECTION COSINES OF PLUMB-BOB
VERT ICAL REFERENGE FRAMES [LOCAL AND GROUND

FIXED)

CONSIDER THE POSITION VECTOR OF THE MISSILE AS GIVEN BY EQUATION

(10-6):

"""/1’. -2 —
R = ZO‘ E

3 + (REM + HH) E3 (9"39)
AND THE TIME DERIVATIVE OF THIS POSITION VECTOR V,
V, = Z§E3 + (REM + Hy) G3 + U x(REM + H,) 53 (9-40)

By £quaTion (10-16}

v, = V"“/o + we X Ry, (9-41)
THUS EQUATING THE TWO EXPR;5510NS
E

25/ ?3 + (}iEM + FlM)E3 + W X (REM + Hy) T3 = ;M + W xR, (9-42)
OR | |
e * QM)F3+ W, x (REM N HM)E3 =E%M + 9 x zg -5'3 +
(Rey + ") 5 (9-43)

THE VELOCITY OF THE MISSILE WITH RESPECT TO THE EARTH MAY BE EXPRESSED
IN TERMS OF THE LOCALG FRAME BY:

= R - Ry R R G om
EV=VM/\,.-+Vw=U R1+V”a +WR’=L_J'1 G' (9')’*”)

OR DOTTING THE ABOVE EQUATION BY EI

RG _Y R H H o RYG, + R G
U =X UJM G]J UMfw "
3 . . (9-45)
Ry,G ~ R H H = R R
VM HZ1 UJM Gad V”Xw + Vw
I=

R G _ R’ H H _ R G R, G
WM Z U.m GBJ = wHKw+ Wy
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BY.EQUATIONS (9-43) (9-44) ano (11-47) Anqisxncz':% x Eé =0,

g (ofyTr e oy s Ry T ¢ by AT R T

PG QG RG
ﬁ‘O 0 RéM + Hy,
R G _ RT _ RG ' -
= U, G+ ¥, G+ W, G3 + W (REM + Hy) 5, 5 .Eé

E E E
3% B (g

COLLECTING COMPONENTS _ALONG El AXES RESPECTIVELY IN THE ABQVE EQUATION:

2E o F - " - L€ E —
Z; e13 +Q _(REM + Hy) By 4+ 2§ oE_ - Pg (Rey + Hy) B + 2 833 * R'EM + My 3

23

R, G

R A A A Y LR A R O

DOTTING THE ABOVE EQUATION BY E] RESPECTIVELY

.Zg G?3 + QG (REM + HM) = RUS + 653 [‘k (REM + HM) ) (9—)48)
1 gy - P (g + ) = V2 = 58yl + 0 (945)
23655 + Reyvme = My (9-50)

SoLving THE Two cquaTions {9-48) ano (9-49) ror Ps aND Qg

G . o
P = = - £ E E '
o R A R E (9-51)
REM + Hy
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7o (RE)) F, = (RE)) E, (9-62)
Pr '-""E%j |
Q = W RE

R 23 (9-63)

" " THE DIRECTION COSINE MATRIX OF EQUATION (9-6'2) MAY BE OBTAINED IN
TERMS OF GEODETchR' LATITUDE, LONGITUDE Lgp, AND A CONSTANT YAW ANGLE
¥ r/E MEASURED FROM THE EAST VECTOR IN THE TANGENT PLANE TO THE
SPHEROID AT THE RADAR SITE, AS:

Ry Cy ;'e/s Swg/s R 0 B
Fo 7| -S¥e/e  C¥q, O s ).CL, 'SARSLE cAe | &
%3 I"\o . | AL, cAsL, s, Y
/7 _:cwm Ly - SV/e sA_R - CL
Fo V= |S¥r/e Sy -chR/E SA, CLg
ﬁ3 ..E)R CLR
.. | —_
Cefe Clp =S¥, 8 o sy ¥, oy
Sypfe Chy - Clpe S , S ¥ CA £
¢y SL.R' | sAk | (9-6%)

THE DIRECTION COSINE MATR!IX BETWEEN THE G; FRAME AND THE LOCAL

EAST, NORTH, VERTICAL FRAME R; 1S:
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_ E E
Q = Ry - 2 c.§33 t O w (9-52)
g REM + Hyy

THE VALUE OF ZE AND R_ IS GIVEN BY EQUATION (9-38) anp cauation (9-36)
AS: - _

25 = -2aF G§3 (9-53)
(9-54)
; “[” (33] 97

THE TIME DERIVATES oF £auATioN {9-53) anp ecuaTion (9= 5”) ARE:

e
i

g = 2ardyy (3-55)
éEM = 2AF G§3 é§3 ) (9-56)

fouaTions {9-51) ano {9-52) ARE THE TWO REQUIRED INERTIAL ANGULAR
VELOCITIES OF THE LOCAL GROUND FRAME TO KEEP s3 ALONG THE VERTICAL; [N

OTHER WORDS, THESE ARE THE TWQ COMPONENTS OF INERT AL ANGULAR VELOCITY
OF THE TANGENT PLANE TO THE SPHEROID WHICH ARE- ABOUT THE TWO ORTHOGONAL
AXES LYING IN THE TANGENT PLANE,

THE 51 FRAME HAS BEEN DEFINED SUCH THAT 63 LIES ALONG THE PLUMB-BOB

VERTICAL AND G} AND G2 LIE IN THE TANGENT PLANE. THE INERTIAL ANGULAR
VELOCITY OF G| 13

T =P, 8 + Qg 32 + R Eé (9-57)

SPECIFYING R WILL DEFINE WHERE THE G AND Go VECTORS ARE IN THE
TANGENT PLANE, AND SINCE THIS ANGULAR VELOCITY COMPONENT IS INDEPENDENT
OF THE LOCAL VERTICAL, ARBITRARILY LET RG = 0. (9-58)

THESE EQUATIONS (9- 51), (9-50) anp (9 58) GIVE THE INERT FAL ANGULAR
VELOCITIES OF THE G, FRAME, THESE ARE:
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RyG 2 aF &E,

M 33 %3 * o3 w (9-59)

A (] + F G§3) + Hy

R G ..I E_
Q = UMI+2AFG§3 +G23 w_ﬁ

Al +F 553) + Hy,

R, = 0,

~THE DIRECTION cosINES aE4 (1'= 1,72, 2) OF EQUATION (9-59) Mmay Bt
OBTAINED FROM TH2IE OF THE MINE_FiRST ORDER DIFFERENTIAL EQUATIONS OF

EQUATIONS (4-12), {4-13) ano (4-16).

THE THREE EQUATIONS ARE:

&%3 = - G§3 Q,

e = gE P |

23 33 &

AR 5

THE DIRECTION COSINE MATRIX BETWEEN THE RADAR -FRAME R. AND EI MAY BE
OBTAINED IN A SIMILAR MANNER. THE INERTIAL ANGULAR RATES OF THE RADAR
FRAME ARE GIVEN AS: '

W, =P R +Q R+ R 33=GE =&, E3, (9'6”.

DOTTING BY ﬁl AND DESIGNATING THE DIRECTION COSINE MATRIX BETWEEN THE
EARTH FRAME AND THE RADAR FRAME AS:
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5|_== MY (%/H) n; .

OR g
Cq;G/H sglz‘._./H 0

- = -6
Sy C¥gy O T, (9-65)
0 o - 1
THE DIRECTION COSINE MATRIX BETWEEN THE ﬁl FRAME AND. THE_ E’ FRAME IS_
R = ( HE ) -EJ_ (9_66)

b g

OR [N TERMS OF LA?!T'UDE)AND LONG I TUDE L,

/5L cL ¢
3 =ks)'m_ -s st ¢ A \E, (9--67)
c AcL CsL s ) |

ml-

By =QUATIONS (_9-65)'-»\36 (9-67)

Cwo/w S¥e O 0
8 =[SVg C¥y O cAle (9'68_)
0] 0 , 1 S

MULTIPLYING THE MATRICES OF EQUATION {9-68)

-CwG/H Sk -3 wG/H S) CL cc wG/H ~s¥ 6/H 5)51—
SLs¥o/,  SSACL CV¥is CLS ¥g/w -C¥q/  SASL
cAcL g cAsL |

SUs/u  ©)

C)CGL'G/H T (S -69)

s
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ey

s

DIVIDING 553-By 523 of EQUleOﬁ F9 69? guz OBTAINS
| Sﬂ’a/ A s:3 - TAN wa/H o (9-71)
ci' G/H c)l c.53 '
OR : L ' E . | :
¥ G/H : ARC TAN 613 | | | (9-72)_
353
IF'THE’LONfoqoétF s p#g[néoﬁTﬁsﬂ%. L; - ARC T§~ igé3 ; - (9-T3)

&= .
_ 31
WHERE L 1S NOTDEFINED WHEN = t90° . EVEN TROUGH "SGLUT | ONS FOrR L7 IN

TERMS OF THE DIRECTION cosnnzs GE no NOT "EXI1ST WHEN - = +90°, THIS

DOES NOT. ﬁzqn iﬂﬁT ?ﬂE G$J Do NOT EXIST FOR THESE VALUES "OF )\

AND U WILL LIE CAN, OF counss, BE

THE QUADRANTS 1IN WHICH ¢
AND

DETERMENED FROM THE SIGNS OF T E CIRECTION COSINES G?3, 23, G

32 of EQUATIONS (9-70) AND {9-73)

For IF)aIS NOT +90°, THEN'BY EQuATION (9 72) .

AND DOTTING ABOVE EQUAIJON_vaES

| (e 3)2 + -(GEB)Q + (o5 (9-74)

CR

3)2 = 1 - 5|N2;a = cos? ;a'
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OR - . _ L
DGTE3')2 * “53)2] o oz ). | (9-75)
THUS, BY EQUATIONS (9;'{1l) aND (9-75} anD F1GuRe 3-10A |

-SfN-wa/'H =, G%B ssc-)

L (9-76)
AND cost/H -= 653 sgc). ' (9-77)
Il‘_d_ A-SIMlLﬁfR MANNER
SINL = 952 SIEC) (9-78)
cos .L = GE‘ sec) ._ : - {9-79)

HENCE THE ABOVE EQUATIONS ARE USED TO DETERMINE BOUNDS ON wG/H aND L,

LAT ITUDE AND LONGITUDE ANGULAR
RATES OF MISSILE

A SECOND METHOD FOR THE DETERMINATION OF NG FROM LATITUDE AND LONGITUDE
RATES 153

I B o+ L'E'S . }'ﬁi + Vo S, | (9-80)
WHERE BY EQUATIONS (11-47) anp (9-68)

— _ £ -
53 = 323 G + G

1 23 T2 . 33

|
—
]

.ch/H &y~ Swa/ﬂ EQ ’

OR ' '

[t et Ja e [0 30 4]
+D We + L) s§3 + wG’,H_‘l EB . | (9-81)
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THUS, THE THREE COMPONENTS OF W. ARE
_PG = ( W +_L) 6%3 -).C ¥ o/
Q = - (wE + [.) 653 + )S we/n (9-32) |
RF;:' (mE+L) 633 wG/H

THE THREE REPETITIVE EULER ANGULAR RATES L, ) AND wG/H oF
EQUATON (9-82) MusT BE kNOwN To SoLvE EauaTion (9-82)

Ir equaTion {9-0) 15 REWRITTEN AS:

= B B < Ryt i) Ty (T - ) x (Rgy + ) T

¢ "3 &M
(9-83)
WHERE : :
= _ = 1S GIVEN BY EQUATICN (0-80 AND T4 BY EQUATION (9-70 ),
B - T¢ _ 9 3 9-1
THEN,
- T = RWT &. = 2E T 3 Y&
RUS Gy + RV Gp + MW 63 = Zy 53 + (REM + HM) 63 +
cE _ e £ \ . E
0 0 REM + Hy
!
OR IN TERMS OF COMPONENTS
- E *
"G < zE ;;%3 + (Rg +Hy,) (L 633 +)| S ¥s/n) (9-84)
RyG = 25 053 (Rg + #,) (L G%s - )c ¥ a/u



~IF THE RELATIONS FOR Z§, Z§ , Ry , Ry OF equatton (9-55) anp
EQUATioN (9-56) ARE usED:

nga -2AF’G§3-,E§,= -2Aré_§3 = -aar)cos)

R, = AE+FG§3, éE_ 2 AF G§3 &gs=2-A.FA"5)C) (9-85)

THEN £QUATION {9-60) secame

RUS w - 2 ar c)Gf?J). + FA+AF sgg + H) (L eg3+)3 "bc.,f:-:)

Rvﬁ 2 . D AF). c 353 - (A 4+ AF G§§ + HM) (.L G-IEB -)5 ‘IbG/H)

RS = énr). S) C) + Hy - 2 AF)C ) 053' . (9-86) -

\F ¥g/y = 0, THEN THE &, FRAME EQUALS THE H, FRAME AND
EQuaTioN (9-87) sEcoMes:

Ru:=-2AF CA 6%3)+(A+AFGE2 +“M).L653
A - 2 . "
Rvﬂ=-2 AF)C )953 - (A ar G§3 +h) (L 653-)')

Rw: =2 AF) 5) C) + oH -2 AF)- o ) G§3 (9-87)
THE equaTion (9-87) secomes

D= RyH
Hy + A + aF (Cos2 Y+ 1) (9-88)
L= Ryl

( A+ ar SIN2 )y ) Cos )

=
2

.
I
(]
o
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Fia, 9.12, PosiTION VECTOR OF THE MISSILE WiTH RESPECT TO THE RADAR SITE,
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PART 1V
SELECTION OF REFERENCE FRAMES FOR

SIMULATED MISSILE DYNAMICS

"THE SELECTION OF REFERENCE FRAMES AND EULER SEQUENCES SHOULD BE BASED
ON THE TYPE OF MISSILE UNDER STUDY. FOR EXAMPLE, THE GIMBALING REQUIREMENTS
OF FREE GYROS OR 3 AX!S, 3 DEGREE OF FREEDOM STABLE PLATFORMS FOR SHORT
RANGE SURFACE-TO~SURFACE OR SURFACE~TO-AIR MISSILES WOULD BE SUCH AS TO
AVOID ANY EULER SEQUENCE HAVING A PITCH (A ROTATION ABOUT AN INTERMEDIATE
NUMBER TWO AX1S) AS THE SECOND ANGLE OF THE SEQUENCE, AN AIR TO AIR
MISSILE WOULD HAVE A DIFFERENT GIMBAL CONFIGURATION REQUIREMENT, ' THuUS,
FOR THE CLASS OF SURFACE-TO-AIR OR SURFACE-TO-SURFACE MISSILES THE EULER
SEQUENCE MOST OFTEN ENCOUNTERED MAY BE PITCH, YAU, ROLL ( e, ¥, P) or
PITCH, ROLL, Yaw (8,  #, ¥).

THE SELECfION'OF THE VAR)OUS REFERENCE FRAMES TO WHICH THE TRANS-
LATIONAL ACCELERAT]ON, VELOCITY AND POSITION VECTORS ARE REFERRED ALSO
REQUIRES A CONSIDERATION OF THE OVER-ALL SYSTEM, THE ADVANTAGE OF
SEPARATING THE ANGULAR ORIENTATION OF THE VARIOUS REFERENCE FRAMES FROM
THE TRANSLATIONAL WiLL BE APPARENT IN THE CONSIDERATIONS TO BE DER|VED
IN THIS SECTION. '

A LARGE CLASS OF MISSILE SYSTEMS DEVELCPED MAY EITHER HAVE A GROQUND-
FIXED TRACKING DEVICE AS PART OF THE GUIDANCE SYSTEM ( COMMAND GU!DANCE) OR
MAY HAVE GROUND-F IXED TRACKING DATA (RADAR, OPTICAL, ETC. ) AVAILABLE FOR
TRAJECTORY AND PERFORMANCE DATA.

AS AN EXAMPLE OF THE VARIOQUS POSSIBILITIES {POSSIBILITIES WHICH ARE
USEFUL) ONE |S CONFRONTED WITH, THE REMAINING PORTION OF THIS SECTION,
BRIEFLY RUNS THROUGH SOME REPRESENTATIONS OF VECTORS OF LINTEREST ON THE
POSITION, VELOCITY, AND FIMALLY, ACCELERATION LEVEL.

- MISSILE POSITION VECTORS

THE POSITION VECTOR OF THE MISSILE CENTER OF MASS {POINT M) WITH
RESPECT TO THE INERT1AL POINT O AT THE CENTER OF THE EARTH, AS SHOWN IN
Fiagure 10-1, MAY BE REPRESENTED IN NUMEROUS WAYS, SOME OF WHICH ARE:

Ry = Ry + R/ - {10-1)

= POSITION VECTOR OF RADAR SITE R WiTH RESPECT 70 O + POSITION VECTOR
Of MISSILE WITH RESPECT TO THE RADAR SITE,



RemRerRg o)

s - .
'

= POSIT10N VECTOR OF GEODETAC CENTER (POINT O ') + POSITION VECTOR
OF MISSILE WITH RESPECT TO GEODETIC CENTER,

ﬁ; = Ru/o-ié. o | (10-3)

[ “e el e e e e B

= SCALAR MAGN1TUDE’ OF Ry ALONG THE K3 VECTOR (VERTICAL TO A
SPHER|CAL EARTH). e
—‘- "y' i- - '
E < LE E = ] .
Ry = x§ )+ E o+ 2§ B (10-4)
- I :

= RECTANGULAR COORDINATES OF POINT M WiTH RESPECT TO O ALONG THE
€1, Epn, Eé DIRECTIONS,

-1

‘ﬁn = )\?R/o -El + XTM/R ﬁ.-l | . ,(10-5)

= RECTANGULAR COORDINATES OF EARTH ~ FIXED RADAR SITE R WITH
RESPECT To 0 IN THE T, FRAME + RECTANGULAR COORDINATES OF THE
MISSILE WITH RESPECT TO THE RADAR SITE ‘AS MEASURED IN THE RADAR
FRAME. (TwE LATTER REPRESENT RADAR RECTANGULAR COORDINATES)

Ry = 2§ B3 o+ (Rg+ HM)‘ﬁs (10-6)

= A SCALAR DiSTANCE ALONG THE POLAR AXIS. T POINT O' + {aEODETIC
EARTH RADIUS 4+ MISSILE LOCAL ALTITUDE ALONG THE PLUMB~BOB VERTICAL,

RM = ﬁR + Ry/R 's'1M : (10-7)

= SAME AS BEFORE + MISSILE RANGE WITH RESPECT TO THE RADAR SITE
ALONG THE SIGHT LINE VECTOR,

MISSILE VELOCATY VECTORS

THE VELOCITY OF THE MISSILE C.G. (POINT M), WITH RESPECT TO THE
INERTTAL POINT O AS OBSERVED BY AN INERTIAL oasgnvea IS THE TOTAL TIME
DERIVATIVE OF THE POSITION VECTOR R, THUS:

R, =7, S ino-8)



WHICH RESULTS FROM TAKING THE DERIVATIVE OF THE LEFT HAND SIDE OF THE ABOVE
EQUATIONS, ONE MAY EXPRESS THE MISSILE VELOCITY IN MANY OTHER WAYS, SOME
OF WHICH ARE:

Vy = UE-T] +07T_ 0T (10-9)

= VELOCITY OF UNIT M WITH RESPECT TO POINT O ALONG THE T{ uUNIT VECTOR
DIRECTION {TANGENTIAL TO THE SPACE TRAJECTORY),

v, = u) |1+v,g‘ |2+w,—3 : (10-10)

=  ORTHOGONAL COMPONENTS ALONG THE INERTIAL VECTORS TI AS OBSERVED
B8Y AN [NERTIAL OBSERVER,

Vy = U8 By + vE By *+ Wo B3 (10-11) .

= QRTHOQGONAL COMPONENTS OF V ALONG INSTANTANEOUS BODY AXES AS
OBSERVED BY AN |NERTIAL OBSERVER

Vu = Y A Vi

= WVELOCITY OF THE MISSILE WITH RESPECT TO THE LOCAL WINDS AS OBSERVED
BY AN INERTi{AL OBSERVER + THE VELOCITY OF THE WINDS WITH RESPECT TO
O As OBSERVED BY AN INERT]AL OBSERVER,

THE LAST TERM.v; MAY BE FURTHER BROKEN DOWN AS

Vu = Y/ Ve + R1 T (10-12)

= SAME AS ABOVE + THE VELOCITY OF THE WIND WITH RESPECT TO THE RADAR
SITE {POINT R) AS OBSERVED BY AN OBSERVER FIXED TO THE EARTH AT THE
RADAR SITE (1.E. TO THE RADAR FRAME R } + THE VELOCITY OF THE RADAR
SITE (DUE TO THE EARTHS ROTATION wE X R, = R/; V AS OBSERVED BY AN

M
{NERT 1AL OBSERVER,

ADDITIONAL EXPRESSIONS FOR THE VELOCITY OF THE MISSILE WITH RESPECT TO
POINT O AS OBSERVED BY AN INERTIAL OBSERVER MAY BE OBTAINED BY TAKING THE
DERIVATIVES OF THE RIGHT HAND SIDE OF EQUATIONS.10-1 THROUGH 10-6, THUS: BY
EQUATION 10-1

V. o=V -
w = Vg M/R (10-13)
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= THE VELOCITY OF R WITH RESPECT TO POINT O AS OBSERVED BY AN
INERT{AL OBSERVER + THE VELOCITY OF POINT M WITH RESPECT TO THE
RADAR SITE AS OBSERVED BY AN INERTIAL OBSERVER,

By cquaTion (10-2)

ik —' - — "
' N
'VM - Vo + VH/O . (lo-lh)
= VELOCITY OF GEODETIC CENTER WITH RESPECT TO GEOCENTRIC CENTER

+ VELOCITY OF M WiTH RESPECT TO GEODETIC CENTER (BOTH OBSERVED
BY INERTIAL OBSERVER).

By eauaTion (10-3)

— * —— y—

Vy = Ry Ry + W, xRy ="V, 4+ U xR, (10-15)

= THE VELOCITY OF THE MISSILE WITH RESPECT TO POINT 0.AS OBSERVED
BY AN OBSERVER ON THE K, FRAME + VELOCITY OF A POINT FIXED TO

H| FRAME AT THE POINT M WITH RESPECT TO O.OBSERVED BY AN INERTIAL

' OBSERVER, ' '

By £quATION {10-Y)

Yy “EXIM € m +tWe xRy (10-16)

[

= THE VELOCITY OF POINTS M wITH RESPECT TO O AS OBSERVED BY AN
OBSERVER FIXED TO THE EARTH FRAME + THE VELOCITY THE OBSERVER
WOULD HAVE IF HE WERE FIXED TO THE EARTH' FRAME AT A DISTANCE

Ry™ ALONG THE K3 VECTOR AS OBSERVED 8Y AN INERTIAL OBSERVER.

By equaTion (10-5}

v, ‘Ei'R T, + 8 *Ry +R*|M/R R, * o ox ﬁng (10-17)
ANDEXIR = 0, SINCE POINT-R IS EARTH FIXED, THUS

VM =R?M/R + EJ-E X (ﬁR + _R.H/R) = RVM/R + (I-JE X‘R-H (10-18)

= VELOCITY OF POINT M WITH RESPECT TO POINT R AS OBSERVED BY AN
OBSERVER FIXED TO THE RADAR FRAME + VELOCITY OF AN EARTH FRAME
FIXED POINT, ' ’
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By equaTions {10-16) anp {10-18)

Er  _ RY - .
v"'_ VH/R o (10-19)

= THAT |5, THE VELOCITY OF THE MISSILE WITH RESPECT TQ THE INERTIAL
ORIGIN AS OBSERVED BY AN OBSERVER FIXED TQO THE EARTH FRAME |3 THE
SAME AS THE VELOCITY OF THE MISSILE WITH RESPECT TO THE RADAR SITE
AS QBSERYED BY AN OBSERVER FIXED TO THE RADAR FRAME, THE ABOVE
CONCLUSION 15 TO BE EXPECTED SINCE THE RADAR AND EARTH FRAMES HAVE
NO RELATIVE ANGULAR MCTION AND THE POINT R IS FIXED TO THE EARTH,

By cauation {10-6)

=<

= 2d B * (Re + #y) Ay + &, x (Rg +.H

M)'Fé

"
-l
O.

+ “Vﬁ/g + E%‘X‘(Ré-+ HM).ﬁé (10-20)

= VELOCITY CF O' WITH RESPECT TO O + VELOCITY OF POINT M WITH RESPECT
7o O' AS OBSERVED BY AN OBSERVER FIXED TO THE H FRAME + VELOCITY
oF A POINT { AT POINT M AND FIXED WITH RESPECT TD THE Hl FRAME) WITH
- RESPECT TO POINT O', AS OBSERVED BY AN INERTIAL OBSERVER.

SINCE ﬁg = Eé EQUATION (10-20) MAY BE WRITTEN AS
oY=V My TR x (Rp M) &g, (10-21)
ALso,
L . L)
Va/o = (Re + fiy) 53 (10-22)

By equation 10-7

Vi ='E% x R, + RM/R 51

wt s X ﬁh/R' .(10-23)

= AS BEFORE + MISSILE RANGE RATE + THE VELOCITY OF A POINT (AT POINT M
AND F{XED WiITH RESPECT TO THE 5‘ FRAME) WITH RESPECT TO THE RADAR
SITE R AS OBSERVED BY AN INERTIAL OBSERVER
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MISSILE ACCELERATION VECTORS

THE ACCELERATION OF THE MISSILE CENTER OF MASS {PoINT M} wITH RESPECT
.TO THE INERTIAL GOECENTRIC EARTH CENTER {POINT O) AS oBstrvep BY AN
INERT AL OBSERVER IS THE TIME DERIVATIVE. oF ¥,, OR

"V w02 Ry vm R, o (10-24)
. oT2

A NUMBER OF EQUIVALENT ACCELERAT:ON VECTORS MAY BE OBTAINED BY TAKING
" THE .TIME DERIVATIVE OF THE VECTOR VM AS EXPRESSED BY THE RIGHT HAND TERMS OF
EquaTions (10-8) ThrouaH (10-22).

By £quaTton (10-10)

BumluTy+ tyTp+ i Ty ~ (10-25)
= A, T+ A2, To + ABMT

= ORTHDGONAL COMPONENTS OF THE ACCELERATION OF POINT M WITH RESPECT
“TO POINT O AS OBSERVED BY AN INERTIAL OBSERVER,

By gquaTion {10-9)

Ay =To, T, + o7V, - (10-26)

= CHANGE IN VH VECTOR .AS OBSERVED. BY AN OBSERVER FIXED TO THE T
: FRAME + A COMPONENT DUE TO THE FACT THAT THE Tl FRAME 15 CHANGING
ITS ORIENTATION, } S

|T-lS APPARENT THAT A VERBAL DESCRIPTI|ON OF THE PHYSICAL SIGNIFICANCE
OF EACH TERM AT THEL ACCELERATION LEVEL BECOMES, MORE AWKWARD AND HENCE WILL
NOT BE DONE [N WHAT FOLLOWS, £.G.

B8Ry IR ) __ (10-27)

MEANS THE TIME RATE OF CHANGE A BODY FIXED OBSERVER WOULD SEE OF THE
VELOCITY OF POINT. M WlTH RESPECT -TO POINT R AS ORlGINALLY OBSERVED BY A
RADAR F IXED OBSERVER
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By gquaTion .(10-11)

- - —_— B2 — B' — — -
Ay =Bl By +BV, By + By B ogx v (10-28)
.By £quaTion {10-12)
Ay = vM/w + lR{}v..r/R + VR {10-29)
IF THE ABOVE VECTORS HAD BEEN TO THE FOLLOWING BASIS,

V2, = B = I (10-30)
M/w IM/\J I .

~R - R f— ) -
V""/R = UIW/R Rl (]0 31)

THEN ONE WOULD OBTAIN

e

~ - T RRS
Ay = Vujw o+ W X Vu/y

- By equaTion (10-13)

— B; ey . kvl
AM=waRR+ VM/R +twg X-V.“/R

By eauatioNn (10-15)

——— K-. — Ll K"" — — — ) K_ — —
AM Ry K3+UKX VM +-HwKxRM+wKX|:V3+wKxRE

A G, xRy)

Ay = KRy K3 + 20 x KV, + Moy xRy + 0, x (B

By cauaTion {10-18)

. - R= —_ Ry = -
AM = RRXIM/R R +Wg X VM/R +wE x ( VM/R + W X RM)

RH)
= APPARENT + CorliOLIS + CENTRIPETAL

Ay = RRVM/R + 27w X RVM/R +Wg X (EE X
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Vu/p +9, X Vy/p O X (wE X Ro).

(10-32)

(10-33)

(10-34)

(10-34)

(10-35).



ACCELERATION + ACCELERATION 4+ ACCELERATION

Cbnégn_sm COMPONENT CEMPONENT
By £euaTion (10-20)
Ruw 250 Ty v (Re + W Ty s By x (Re + )Ty (10-36)
+"':‘;' x(f?E-i-FtM)‘i.T + D, X (Rg + Hy) Ay + (Rg + Hy) W e E
(REH+H")1-T +2Uﬁ’3x(R:+H)H +H§ x(R3+H)F+ > zo,s*‘ -
BY EQUATION ?10-21) ; M3 E x (Re Hi' "3
Ry =g B3 ;_(f"“E ; Hy) Ty + 2y X (Re + &) 3 (10-37)

+ Wy X (RE_'*‘ Hy) H3 +EH_x EH x (R + H”_):I, -H_3

By EQuUATION {10-23)

Ay =..$E"X|;t-_JE X R, + RM/R §1M. + 55 X WMXRZI

Ru/p S1y+ Bg x Ryjp 51+ " T x Ru/g
Uy X EM/R _5_1 __ "'ES x EM/R

RM/R S1M + Qasx RM/R S.IM + Has X-R-M/R

+

+

[

* By * (@5 * Ru/p)

[10-38): ]

THE TERM H"ﬁs oF £quaTion {10-38) (S NOT INDEPENDENT OF THE REFERENCE

FRAME FROM WHICH THE OBSERVATIO~ |5 MADE, HOWEVER, IT |S THE SAME AS IF THE
OBSERVER UERE AN INERTJAL FRAME, FOR EXAMPLE CONSIDER THE TERM Us X RM/

|IF WE EXPRESS THESE VECTORS I[N THE S| AND B‘ FRAMES AND EQUATE THE VECTORS

— i -5 = = -
ws x RM/R = ws % RM/R = US X RH/R R
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THEN TAKE THE DERIVATIVE AS OBSERVED BY INERTIAL OBSERVER

o {=_ xR ' & B/ +T xF
CL E/R).# Wg X Ru/p TWg x Ru/p
. ) '-_I !.;A |
= ?Jsx RM/R +T0_S X LRM/R +w5 X RMXJ i (10-39)
THE DERIVATIVE WHEN EXPRESSED nq?i FRAME 15
o (" X RS MEr T .= -
5 /R (;gs Oy X T ) x RM/ x\Ru/p 40 ¢ x Ru/p (10-40)
- 52 Sg
Wy X /R +t?s x| Ry/r + ¥ X (Wg x RMfR )
AND THE DERIVATIVE WHEN THE VECTORS ARE IN THE B, FRAME IS
B -8B . T IS - — _ B.. -
7 (0g * Ru/p) = (g Taxug) xRu/g +Ts x( Ru/p *Ws WM/R)
—_ B« =l f—— —_— B'—
= g X RM/R + @, XWg) x Ru/p *Wg x Ru/gp (10-41)

+Dg X (5'3 X RM/R

By teuaTion (10-39) AnD (10 10)

51.';— _
g = ! ¥g

wWHICH IS TO BE EXPECTED BECAUSE lU MEANS THE TIME RATE OF CHANGE OF THE

INERTI AL ANGULAR VELOCITY VECTOR OF THE ‘g FRAME AS OBSERVED BY AN INERTJAL

OBSERVER, WHEREAS THE TERM QF MEANS THE TIME RATE OF CHANGE OF THE
INERTIAL ANGULAR VELOCITY OF

THE S| FRAME AS OBSERVED BY AN OBSERVER ON
THE 3, FRAME,

HowEVER, BY EQUATIoN {10-39) anp (10-40)

B # S
W . (M) s
S S

(10-k2)

175



S!NCE THE TERM ON THE LEFT IS THE TIME RATE OF CHANGE OF THE INERTIAL
ANGULAR VELOCHTY OF THE S FRAHE AS OBSERVED BY AN OBSERVER OR THE'E

FRAME.,

Coohn:NATE TaaNsronukrlons OF SOME COMPONENTS AT THE VELOCITY LEVEL
WILL YIELD MORE HYBRID RESULTS. FOR EXAMPLE, CONSIDER THE INERTIAL
ACCELERATION ‘OF THE MISSILE AS GIVEN BY EQUATION (10-35). IF THE VELOCITY
OF -THE MISSILE WITH RESPECT TO THE RADAR SITE AS OBSERVED BY AN EARTH
FIXED OBSERVER |5 EXPRESSED IN COMPONENTS ALONG RADAR AXES AND ALONG BODY
AXES,

THEN

R R . R =8

WA = ey - (10-43)

TAKING THE DERIVATIVE OF THE LEFT HAND SIDE OF EQUATION (10-43)

o (RVR/R -RRV“/ +Wg X ”“v;/g , (10-h4)
oT -

TaK ING THE DERIVATIVE OF THE RIGHT HAND S!DE

— R .
tue X T (10-45)

EQUATING EQUATIONS (10-4l4) anp (10-45)

VM/R v../ = (""'ﬁ;-@' ) x RV"_/R_? (10-46)

AND UTILEZING EQUATION (10-46) IN EQUATION (10-35)

- i oy =iy by o -
AM"BRVM/R + (Wg -@g ) xRVH/R + W x Ry

x (T xR,) . (10-47)
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IF ONE TAKES THE SECOND DERIVATIVE OF £QUATion (10-4)

A 2R = EEY 3 Y 0 T x v
Ay =DE R, = %/, Ei +2w. x SV #0 x (0 x V) {10-48)
pTe
APPARENT + CorioLls + CENTRIPETAL
ACCELERATION ACCELERATION ACCELERATION

THE FAMILIAR EXPRESSION FOUND IN CLASSICAL PHYSICS TEXTS IS OBTAINED, |T
IS TO BE NOTED THAT THE CORIOLIS TERM OF EquaTion {10-48) 1s THE same As
THE CORIOLIS EXPRESSION OF EQUATION (10-47) AND OF EQUATION (10-36), sINCE
BY EQUATION (10-19) ,

Ewm Rt
= "y -
VM HZR .
WHETHER THE TERM CORIOLIS 1S RESERVED FOR THE EXPRESSIQN INVOLVING THE

ROTATING EARTH FRAMEZW . x By IS NOT IMPORTANT, THE FACT |S THAT
MATHEMAT [CALLY THE BASIS VECTORS ARE ROTATING.

SOLUTION OF MISSILE TRANSLATIONAL

DYNAMICS |IN BODY AXES oo VB

THE TRANSLATIONAL AND ROTATIONAL ACCELERATION EQUATIONS OF MISSILE
MOTION ARE SOLVED FOR IN BODY AXES IN TH1S5 SECTION.

TRANSLATIONAL ACCELERATJON

CONSIDER THE INERTIAL ACCELERATION OF THE MISSILE CENTER OF MASS
Ay AS DERIVED FROM THE EXPRESSION FOR THE VELOCITY OF THE MISSILE WITH
RESPECT TO THE INERTIAL POINT O AS GIVEN BY EQUaTION (10-11)

Vu=U T eV E o+ wl 5 | (11-1)
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THE ACCELERATION 1S GIVEN BY

A" "—'BVM'I' E'B X v“ . (1]_2)
WRITING
Mo R =) F
IN TERMS OF EQUATION (11-2)
M EV; +3vaa =FE+FEG + F2 (11-3)
ONE OBTAINS THE TRANSLATION EQUATIONS TO BE SOLVED IN BODY AXES AS
B, B .8 B B B
M (UM + Q W, - Ry VQ= F-‘IA + F1N + F"T (11-4)
G
e : ,
8y B B B
M\VM + RB Vy - Py WM) = FQA + FENG+ F2T

m{®™ + P Vv - QU =F2 +"F2 + Fo
(M+ P M BM) 3a 3“0 37,

MISSILE KINEMATICS

THE VELOCITY OF THE MISSILE WRITTEN IN TERMS OF EQUATION (10-18) 15,

T Ty +B: xR, (11-5)

THE POSITION VECTOR OF THE MISSILE Ry MAY BE WRITTEN IN TERMS Of
£quUATION (10-1) AS THE POSITION VECTOR OF THE RADAR SITE PLUS THE POSITION
VECTOR OF THE MISS!LE WITH RESPECT TD THE RADAR SITE,

Ry = Rg+ R/ g - (”'6)

178



By FIGURE 11=1

*.
)
90‘“\\\‘ (
K3R
POLAR
*
AXI1S o v
e
Fite, 11,1, RaDAR SITE.
= _ ¥ R = R = R = -
Re = Re T3 = XR Ry o+ YR R+ Zg Ry {11-7}

IF THE RADAR REFERENCE AXES R, ARE ORIENTED IN THE DIRECTIONS OF
EAST, NORTH AND VERTICAL AXES AT THE POINT R, THEN

E,R=‘§‘1 (11-8)
AND BY £UATION (9-10)

Ray = (- D * s)\R;s);Rf ¢ )R

Do Dt v e
WHERE Kp. = K. R

K R
R32 R3 2

THE RELATIONSHIP BETWEEN GEOCENTRICILATITUDE‘) * AND GEODETIC
LAT]TUDEA IS GIVEN BY EQUATION (9-24) as, .

Tan )* =__B_E_ TAN). {(11-10)
) 3 .

A
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THE RELATION BETWEEN. GEOCENTRIC EARTH RADIUS Rgﬁar THE RADAR SITE

AND GEODETIC ear_rru' ru\ow's RE IS5 GIVEN BY EQUATION (9-29) as

-

WHERE

(1 +F 5|N2ﬁ?\) (11-12)

THUS BY EQUATION (11-11) AND (11-12)

lé*. = B2 nélri,)k' - e
T Eg - '51"‘,')* ?1..+r SIN )R_) .

BY EQUATION (11-13) AND EQUAT1ON (11-'{], ONE OBTAINS FROM DOTTING
equaTioN {11-7) 8y ®, REsPecTIvELY

(11-13)

X2= RER' K:31 =0 . (11-1h)
".'.'§=RE K =82 . sINnDR (1+FSIN2))SIN ) ) )

-R 32 A S'NA*

R * 2 o
Z,=Re kR = BT SIN)R_ (1+rsmj )cgs() -)*)
=R 33 A ————;— R R - R
TN _
THE EXPRESSIONS OF EQUAT{ON (11—]#) ARE CONSTANTS FOR A GIVEN RADAR

S1TE. THE SECOND .VECTOR OF EQUATION (11-15) MAY Now BE WRITTEN WITH
gquaTion (11-6) anp (11-14) as:

['Jg x (R, +§_“./a)]R =we | K R0 (11-15)
RE RE RE
'3 B 3
oo *“/R IR




WHERE

B w E5=we ( R153 B+ R23 R, + R§3 E3) . (11-16)

IN COMPONENT FORM EQUATION (11-15) 1S

F De X Ru)® = {: 23 (}R "o \> (YR YR ):}R1
+¢og{:f§3 xR ol (;R ZR j) %, (11-17)

+wE.L1 (Y7 +YR/)-R3X H/Rﬁé"
=R/ WR +Rr/ ViR + R/, Fﬁ = | (11-18)

AN ORTHOGONAL TRANSFORMATION FROM THE R BASIS VECTORS TO THE B8 BASIS
YECTORS YIELDS

[
R/, ut = R/l UE 31"1 + R/, V;‘l 81“2 + R/| W:: 513 {(11-19)
B _ R R
R/, Vy = R/l Uy 85, + R/, 22 + R/ M 23
R/, W5 = &/, UR B§1 +r/, VE ;2 + R/ Wo 323

EQUATING THE TWO EXPRESSIONS OF EQUATiONS (11-1} ano (11-5) For THE
VELOCITY OF THE MISSILE WITH RESPECT TD THE INERTIAL POINT O AS OBSERVED BY
AN INERT!AL OBSERVER,

us s, =fU® 8 +(wExRM)B

I M/R {11-20)

FROM WHICLH ONE OBTA[NS,

R - B =]
L7 SN



RyB B B
VH/R = Vg - &/ Yy (11-21)

-

AN ORTHOGONAL TRANSFORMATION OF THE MISSILE VELOCITY VECTOR N THE
8, FRAME TO THE H, FRAME YIELDS, '

RUa RuB B Ry, B Ry yH B
M/R m/g M1 F /g o+ Wy w3
Y] = RU HB RvB B + Rw's B
M/ Mg 20+ m/g Moz M/p 23 (11-22)

RWH/R / HB + VB + Rw,i‘/R ue

W Mo
THE LOCAL ALTITUDE H, IS OBTAINED FROM
Hy = Hy (0} + [T R bt (11-23)

0 M/R

THE COMPONENTS RUN AND RVH ARE USED N THE GENERATION OF LOCAL
R R
LATITUDE AND LONGITUDE ATES AND L .

AN ORTHOGONAL TRANSFORMATION OF RV”/R TO THE RADAR REFERENCE FRAME
R, YIELDS

R = RuH H H wH H
UM/R M/R + VM/R o+ M/R R13
R - RyH H RyH H
Vu/R = YR Far t VR Rap t ", M/R "3 (11-24)
) = RUH rH H H RygH '
RWy /R R f31 Y VR R T w'n/n 33 .
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"THE VELOCITY OF THE MISSILE WITH RESPECT TC THE WIND NECESSARY FOR
COMPUTING THE AERODYNAMIC FORCE 1S OBTAINED FROM £QUATION (10-12) as

Vy = VM/W + RVH + W, X -ﬁM (11.-25)

anp 8Y EQuaTioN (11-20)

Vu = Ty + W x Ry {(11-26)

2

THEREFORE BY EQUATIONS (11-25) ano {11-26)

Y + TV o= RVup oo (11-27)

. THUS, IF THE VELOCITY OF THE WIND AS OBSERVED, BY AN OBSERVER AT THE
RADAR SITE IN THE LOCAL H, FRAME IS TRANSFORMED INTO COMPONENTS IN' THE
B} FRAME, '

RyB Ry qH
Uw . Uw
RyB

Ve 1o g" Rv

by
(11-28)

RyB RyH
ww Wy

THE RECTANGULAR COORDINATES OF THE MISSILE WITH RESPECT TO THE RADAR
SITE R IN THE RADAR REFERENCE FRAMER} 15 OBTAINED FROM THE EQUATIONS

ABOVE AS
R R T R
/R = XM/R (9)  +,4!/ /RO

YS/R = Yop (o) + /4/% Rvﬁ/R DT _ (11-29)
ZE/R = Zﬁ/R (o) ‘+/A§/T RWM/R 0T .

THE ORIENTATION OF THE R'R FRAME WITH RESPECT TO THE R, FRAME 1S GIVEN
BY EQUATION {9-10) as '

. i 0 0
?m - 0 c()-)*) s ()-A%) | =
0 -S(Q-Af) c ()-X) (11-30)
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- The URIENTATION |OF THE ®| FRAME WITH RESPECT TO THE W FRAME IS

GIVEN BY EQUATION (9- 13) AS

.E; = ( RH-) -;

{11-31)

WHERE THE DIRECTION COSINES . ARE GIVEN BY EQUATION (9- 13) IN TERMS OF
LOCAL LATITUDE AND LONGITUDE AND RADAR SITE LATITUDE AND Lone:‘ruoz.

THE LOCAL LATITUDE AND LONGITUDE ARE OBTAINED FROM EQUATI[ONS

(9488) AS’

% = ViR

Ja"’_("-‘-052)+1) + A+ Hy

l; "o
(A+Arsm2)+ H) cos)

'= '

THE ORTHOGONAL COMPONENTS OF w ARE GIVEN BY

H = '(”E + i-) ?3 +).".*;1
WHERE BY EQUATION (9-8) | |
E3—_j 'c)ﬁe v s ) iy

AND CONSEQUENTLY,

' 'Q'Hﬂ).ﬁ1+(:u;+.L) c)ﬁ‘2+(wE+L)_s)ﬁ3

= Py Hy + Q F2+ RHﬁB
DOTTING EQUATION (11-35) BY M, RESPECTIVELY
Pu = A
QH= (we + L) ¢ A
(wg + L) s .

L
X
]
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ROTATIONAL EQUATIONS OF MOTION ARE GIVEN BY

(e, -

> |B R By _
- B 8

. , _ . =_
Ry 185 + Py Qg ( 185 = 135} = Ny + Ny,

WHERE Ly, MT, AND NT ARE GIVEN BY EQUATION (11-35),

SOLUTION OF MISSILE TRANSLAT)ONAL DYNAMICS

IN BODY AXES D
= (VM/w + V)

THE TRANSLATIONAL ACCELERATION EQUATION OF THE MISSILE USED IN THIS
SECTION 1S OBTAINED FROM EQUATION (10-32) as:

% = By - m G\ T — - = = ~
Av = TAVM/w +twe X Vnjw+ )V + (w +hJE)xEvu+wEX(wExRM) .

aT- a'r

{11-39)
WRITING THE INERTIAL ACCELERATION OF THE_MISSILE OF EQUATION (11-39) iN THE
TRANSLATIONAL DYNAMICS EXPRESSION MAy = Fp + Fy + Fye {11-40)

IF F+ aND Fnr aRE EXPRESSED IN TERMS OF COMPONENTS ALONG THE BODY AXES
T G :

Bl OTHEN, Fp = FB %, anp, Fp = FE, & (11-41)

THUS, WRITING EQUATIONS {11-40) 1n TerMs oF (11-39) anp (11-41)

Mo (1) GDCVW + {@ +wg) x Wy +0g X (@ x Ry) + Bavn/w +

Do )T

wg X VM/w}n Fa+tFg+Fr, (11-k2)
WHICH UPON TRANSPOSING THE TERM TJE X (GE X RM) TO THE RIGHT HANDED SIDE,
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Mo (T) GAE?N + (g _;_GE)xva','_B EVu +Esx‘-";4/£#
- . b T - - T

=Fy+Fr+ (Fg - ugg X (e "Euj__ (11-43)

1 s- -

THE EXPRESSION F - Mi( we * ( @ x RH)} WHICH {S THE RESULTANT
FORCE DUE TO THE NEWTONM|AN MASS ATTRACTION GRAVITATJONAL FORCE ANDG THE
CENTRIFUGAL TERM DUE TO EARTH ROTATION 1S CALLED THE "EFFECTIVE GRAVITY"
AND IS IN .THE DIRECTION OF A "PLUMB=-BOB", THUS THE "EFFECTI{VE GRAVITATioNAL"
TERM 5 :

FG Muwg x (W XEMI)' =+ FGE .'5'3 : (11-4Y4)

THE VELOCITY OF THE WIND WITH RESPECT TO THE EARTH 15 QUITE MEANINGFUL
TO AN INDIVIDUAL WHEN SPECIFIED IN TERMS OF EASTERLY, NORTHERLY AND VERTICAL
COMPONENTS, THUS ASSUMING WINDS SPECIFIED IN THE H, FRAME.®

B M T = E6 = :
V= BUY H = U?w S (11-45)

AND

N LT A L (11-46)

R v

THE TERM o, x EV, oF EQuATION (12+5) REQuUIRES W, COMPONENTS IN THE
G, FRAME, THUS IF - -

) E (11-47)

THEN - - - -
E3=GE G, + GE_ G. + GE_ @& (11-43)

13! 23 2 33 3°

WRITING EQUATION (11-43) In COMPONENTS ALONG BODY AXES 8, AND &
sy cauaTions (11-45), (11-46) ano {11-48).

| AXES,
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_ G G G
" ET)' GEL'Iw -51 + Ga,}w Gy + GE\:;w 33-(- PG_: - 3513 Qec.q. e .:;53 R.*+ G§3
‘ s Ve ¥y
B, Bp B3
Pafu o1+ By, 8yt Mo B3 v [Pe e e
”3/@ Y/ S M/
= FB a|+F?I B|+FI F”'49)

a
Ge G3-

EXPANDING THE DETERMINANTS OF THE ABOVE EQUAT{ON
v (TINRU, + g Qe + wg 653) v (Rg +w, Ggs)}ﬂ "‘E;EU\« -y (Pg+tg G1E3)'
E 8 E E EyG w £)G @ AE_ b
+ Uy (Rg + W 8332} Go +% W, + V3 (Pg +¥¢ 0153)- U (Q_G + W 623&03

B' L] — - '
+{Um/w + Qg wg/w RB})?,] +fvm/w - wfj/w Py + Ua/w' R% By + {Bwufw - U&/w Qg
B 5. = FB = B 7 8 5 B = B & B B G,
+VM»¢P}33_F1 B +FA2 32"'“3 B3+FT1 Bl +FT2 52+FT3 E'3-|'FGE 3
(11-50)

Y

THE DIRECTION COSINE MATRIX BETWEEN THE BODY FRAME AND THE LOCAL GROUND
RAME G B, = (BG y & k
FRAME G| S B, (B‘J) g (11-51)

DotTiING EQuaTion {11-50) By BI.RESPECTIVELY AND UTILIZING EQUATION

(11-51)
. ] .

M {(BUM/w + Qg Wﬁ/u - VS/H RB) + I:GEUN + Ew& (Qg + We 653‘)- EV:’ (RG'H‘JE 633)]
GEy  _ELG E £,G E GE EyG

Byy + \: v, -W, (Pg + UEG]B) + fug (Rg + ¢ G33ﬂ’312 + [ W, o+ SV

(PG + We G%B) - Us' (QG + W Gg3ﬂ 8?3}= "Fi‘l + ]-".i'_.I & FGE g6

13
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M{(vafw-w: v Pot Ry U:/,"’) *Ezﬁw . 8 (0 + v o) -Ev:,

653):, Pee
[Ew + EV (PG o GEB) EUG (Q et :| 23} * F$2 * FGE 23
MJBB@H[W - Qg Uy, + P _VB/ } +[ + E"?{j (QG . B 053)

' Efvw ) Ewﬁ- (Po + b @ 3) * U (R + % 33] EE ' EE@w ¥ Vs- (Po+ ©¢ 6%3)_

" (% v o 653}3 553}“ LR | (11-52)

‘m

£.) s By _E46 1: €, 6
{Rg + wg G§3) 321+EV W) (P +UE )+ Uw (RG+

£,,G ]
Vw .(RG+ME Gg'l )Bgl

THE DIRECTION COSINES B?J ofF EquaTioN (11-52} ARE aIVEN BY eauaTion (11-51}),

THE VELOCITY OF THE MISSILE WITH RESPECT TO THE WIND IS OBTAINED FROM THE
SOLUTION OF EQUATION (11-52). By eaquaTion {10-12) anp gauation {10-16).

Vy = 57, + @ X Ry = Vy/yy + Yy = Yy +

. 4. x R
M +

£y v BT
g X Ry HENCE Vy = Vn/w + TV, .
(11-53)
SINCE THE RADAR FRAME 1S FIXED TO THE EARTH, THE VELOCITY OF THE MISSILE

WITH RESPECT TO THE EARTH 1S EQUAL TO THE VELOCITY . OF THE MISSILE W!TH -RESPECT
TO THE RADAR FRAME.

= - ER —
= SRR+ VR R+ w R3 {(11-54)

FURTHERMORE, UTILIZING THE DIRECTION COSINE MATRIX BETWEEN THE RADAR FRﬁNE
AND THE BCDY FRAME B, = ( B? ) E}’ ONE MAY OBTAIK
J .

VM/W = US/N E} + Va/w 32 + Wﬁ/w 33 = U:/N‘EI + Va/w R2 4+ Wﬁ/w R3 3 (11_55)
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DoTTiINGg EQUATION (11-55) BY E} RESPECTIVELY

UR = UB R ye R B . nmR
e TR I TIL R A

VR B R B 8 R
/v = S B2 * Vs * ¥w B3

wg/w = ug/w 3?3 + vs/w 323 + wifw 323 ) (11-56)

EXPRESSING THE VELOCITY OF THE MISSILE WITH RESPECT TO THE RADAR FRAME AS
GIVEN & tgaquaTion (11-53), (11 5&), AND (11 -56).

Ry - = R e R, = —
UM/R Rl + RVM/R Ro * wM/R R3 = UM/w Ry VM/W Ro

E,6 — L Eg6 —
* WE/R i3 T g e Y Yy o W 3 - (11-57)

DoTTING EQUATION (11-57) BY R, RESPECTIVELY AND DESIGNATING THE DIRECTION
COSINE MATRIX BY G| = (a® } R} ,
|
| (11-56)

ONE OBTAINS

UR

M/R

: L EvG E
+ ( EU& of, *I Vg 68, + wg _Ggi)

Vi/R = Vasw + L BUS ofo + B8 o, + BE Gge)
. R E
WE/R = WM/W + (. UG 6?3 + Ev& 653 + Ew:i G§3). (]1_59)

THE RADAR RECTANGULAR COORDINATES ARE:

a
XS/R = XR/ (o) + U:/R DT
a
YE/R = Yﬁ/ﬁ (o) *;é(? VS/R P
zg/R = ZS/R (o) +/T Wi/ DT . (11-60)_

o)
BLOCK DIAGRAM 1S SHOWN IN FiGure {{=|,
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SOLUTION OF MISSILE DYNAMICS IN GROUND
FIXED TRACKER AXES 2

(ER + R
or /)

IHE MISSILE TRANSLATIONAL ACCELERATION EQUATIONS SOLVED N A GROUND
FIXED REFERENCE FRAME ON THE SURFACE OF THE EARTH (E G, A TRACKER~RADAR
REFERENCE FRAHE) ARE AS FOLLOWS:

THE POSITION VECTOR OF THE MISSILE WITH RESPECT TO THE INERTIAL ORIGIN
1S EQUAL TO THE POSITION VECTOR OF THE MISSILE WITH RESPECT TO THE RADAR
SITE PLUS THE POSITION VECTOR OF THE RADAR SITE WITH RESPECT TO THE INERTIAL
DRIGIN AS SHOWN IN FI1GURE 11=2, 'HENCE R RR + RM/R

POLAR AXIS

GEOCENTRIC
CENTER OF
EARTH

Fia, 1T1-2. Ravar OrRiGIN ON SPHEROIDAL EARTH,

IF THE COORDINATES OF RR ARE EXPRESSED IN THE EARTH FRAME AND THE

. CODRDINATES OF RM/R ARE EXPRESSED |N THE RADAR FRAME ONE HAS!

E"_ =) - yR - R - R
R E + ZR 3 AND RM/R = XM/R 51 + YM/R Ry + ZM/R R3.

(11-63)

-XEE]-i-Y
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TAKING THE TIME DERIVATIVE OF EQUATION (11-63)

— - _ — R_" _ —_— - .
DRM’VH“EERE +“kXRR+ R“ZR +URXRM/R (11.‘61‘.)

QT aT

SINCE THE RADAR ORIGIN IS FIXED TO THE EARTH ITS COORDINATES DO NOT
CHANGE [N THE EARTH FRAME, HENCE R a RE = O aND 7 = G » HENCE

——— R — it
Vy = aRM/R +W X Ry - 0 T (11-65)
b T
TAKING THE DERIVATIVE OF THE VELOCITY VECTOR OF EQUATION (11—65)

-EM v RRCS Ry/r + wp X dRM/R X D RM (11-66)

T

AND BY EQUATION (-11-.65)

— — RN e —_ -

on Ru= ™) gt 2B x "Y B+ P x (T xR g
e a T

UTiL1zing eQuaTion (11=-67) 15 EquaTion {11-40)

RR 2= — Ry =

ab R/ + 2wg X 3R“{ +wEx(wExRM)} +F +FG (11-68)
2
R

d7

SUBTRACTING THE CENTRIPETAL ACCELERATION TERM

AR 2— _ R - _ - - - -
a RH/R-l-EuJEX aRM/R }= FA+FT+FNG'UE X(UEXRM)
) T2 d 7

By EQUATION {17-U4)

RR~ 2= — _ _ o
“ILE.R”X *2we X ) b R“/R_} =Fa+Fy+Fye _6_3 (11-70)
3 T2 DT

(11-69)

192



THE DIRECTION COS}NE MATRIX ORJENTING THE RADAR FRAME R1 WiTH RESPECT
TO0 THE EARTH FRAME E-I 1S GIVEN BY:

|
0l

= (85 E | B (11-71)
THUS,
Ry + RE3 Ry + R%S Eé . . (11-72)

1

3-7 13

UTiLtzING EQuATIon {11-72) N (11-TO)} AND EXPRESSING THE. VECTORS IN
COMPONENT FORM: : '

{M/R Ry +Y/R R2 +ZH/ 'ﬁ3+2CUE E1 | 32 —9-3 .
RE rE rE
13 23 33
R R ) R
XM/R YM/R ZH/R

=G—§| . F$> B, + Fae :I3 . ’ . (11-73)

®

THE DIRECT{ON COSINE MATRIX ORIENTING THE BODY FRAME WITH RESPECT ToO
THE RADAR FRAME |5 '

5, = (o} ) R (11-74)

THE DIRECTION COSINE MATRIX OF EQUATION {11-74) ORIENTING THE MiSSILE
BODY AXES WiTH RESPECT TO THE GROUND FIXED RADAR FRAME R MAY BE OBTAINED
IN ANY OF THE METHODS DISCUSSED IN SECTiON 2,

THE ORIENTATION OF THE LOCAL EAST, NORTH, VERTICAL FRAME H
RESPECT TO THE RADAR FRAME E} IS GIVEN BY EQUATION {9~13) as:

I WITH

Hy  fC {L-LR) SN, s (L-lr <A s {L-lr

"2 '5)’5“"‘““)_ S)S)R C(L-Lr) + €) A, -S)C)R c(L~LR)$r,3c:§
Hy \c)ﬂs(L;LR] -C )_SER ClL-Lr) + SJC)R c))c/%R C{L-Lr)+ s)sﬁ

! : . (HR )

)R, (1-73)
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THE LATITUDE AND LONG|TUDE GF THE MISSILE CAR BE COMPUTED FROM
equatioN {9-88) as:

)’. = Ry

ar (cos2 D& 1) + A+ Hy

. = - RH
L | | Uy

(a+ 48 518 ) 4 hy) cos A (11-76)
THE COMPONENTS OF VELOCITY OF .THE MissiLE RUH,  ByB Ryl yay g
> RUH o+ RyH . + RwH 5 o RyR Ry + RVR Ry + RWR R
OBTAINED FROM FUJ Fy + RV Hp Mo H3 M ‘M T2 M3
(1-17)

DOTTING EQUATION {11-T7} BY ':-Tl RESPECTIVELY

Ry - R R R R
R T U HTy VM Mg+ Ty By
RyH _ R . R R R R
Vu= U K1+ Wy Mop b W, HG3
R = R HR + R l:iR + R nR
Wi T Uy T3 Vuflgo  * Wy Hag {11-78)

FiNALLY THE SCALAR EQUATIONS OBTAINED FROM EQUATION (11-73} uTiLiziNg
gquaTion (11-78) anp equaTion {11-75), FIGURE [1=2A

RRY - Y v B R Y
M [ XM/R . cwE(H53 RZM/R _ H§3 RYM/R}] =(FA[ + F-[-')_Blon1 + F'GE HSm1

RRLS R Ry RS R " - - - =
" [ T/t B N33 Tyse - "y “‘iBﬂ“(F“l- +F1 ) B Rp + Foe W3Ry

RR- . ’
R R _ Re R _ - . — .
M |: ZM/R + E&U’E (H'i?) YM/R XM/R H23)! ...‘F'Al + FT.;) BI-R3 + FGE H3QR3 .

(11-79)
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' THE VELOCITY OF THE MISSILE WITH RESPECT TO THE EARTH IN THE RADAR
FRAME IS GIVEN BY!?

(11-80)-
. s
You/ & z"‘/“ ’
AND RADAR RECTANGULAR COORD INATES ARE GIVEN BY:
e = Xa/w (o) "'/ X R OT
. 0
R - T R
Y. = Yu/r (e) + / Ym/R bT (11-81)
&, = 2%, (o) +/' iR, oy
M/R M/R b M/R

THE VELOCITY OF THE MISSILE WITH RESPECT TO THE EARTH 1S GIVEN BY

2 . -2 1/2
Ywir = RXM,VR * RYﬁ/n * RZM/R] / (11-82)

AND FOR A STUDY WITH NO EXTERNAL WINDS THiS |5 THE VELOCITY NEEDED TO
GENERATE THE AERODYNAMIC FORCES, |.E,

.

Yo = Vfo . | (11-83)

-SOLUTION IN INERTIAL FRAME

THE TRANSLATIONAL ACCELERATION EQUAT)IONS .ARE OFTEN SOLVED IN AN
INERT{AL FRAME OF REFERENCE, CONSEQUENTLY THIS SECTION WILL DERIVE A
SET OF EQUATIONS IN SUCH A FRAME, ’
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'THE POSITION VECTOR OF THE MI$SILE WITH RESPECT TO THE INERTIAL
ORIGIN OF FIGURE 11-2 EXPRESSED IN INERTIAL AXES 1| (5 =

Ra = X Ty + ¥, o+ Zh g (11-84)

AND TAKING THE TIME DERIVATIVE
v = IER +-{3_XR

a T

BUT i, = 0, THEREFORE, Vy = X} —1 + thq T+ 2,‘4 —13 . (11-85)
THE INERTIAL ACCELERATION 1S GIVEN BY:

UTiL1zing equation (11-86) In eauaTion (11-3)
4 - s ' _ -— B —_—
M [;M n + YM ls + ZM lé] = FR, B, + FTl B, + FG

DoTTING £QuaTion {11-86) By 1, RESPECTIVELY

M Xg = (FEJ + F?I By «» 14 + Fp . P
¥ 8 B = .y T
M M= (FAl + FTI) B, . 1y + FG . g
S B 8 = T = -
Wz = (FAI + FTa) B - i3 + Fe - 13 (11-88)

THE ADVANTAGE OF THIS SOLUTION LIES IN THE FACT THAT THE THREE COM~
PONENTS OF INERTIAL ANGULAR VELOCITY OF THE INERTIAL FRAME PI’ Q” R, ARE
ZERO, THUS SiMPLIFYING THE COMPUTATIONS TO OBTAIN THE DIRECTION COSINES.

SOLUTION OF TRANSLATIONAL EQUATIONS
IN RELATIVE VELOCITY VECTOR FRAME

THE TRANSLATIONAL ACCELERATION EQUATIONS ARE SOLVED 1IN THE TT

REFERENCE FRAME, THiS FRAME (FiG. 11-3) HAS THE UNIT TT VECTOR IN THE
DIRECTION OF THE VELOCITY OF THE MISSILE WiTH RESPECT TO THE EARTH,
T§ LIES IN THE PLANE CONTAINING THE LOCAL VERTICAL 53 AND THE T* VECTOR,
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£3

ab \62\ °361,

AND'Té'IS NORMAL TO THE INSTANTANEOUS "RELATIVE VELOCITY VECTOR = VERTICAL
PLANE", DESCRIBED ABOVE,

o THE ORIENTATION OF THE T# FRAME WITH RESPECT TO THE LOCAL PLUMB-BOB
FRAME, G, |S GIVEN BY A PITCH-AND A YAW MATRIX!:

™ . M, (¥ M (e z (11-89)
1 Y ' Tf/G ) ] ( TT/G) l
OR, '
™ fco c¥ ceo Sy X
j T*

b Ty, L LA
T - c | 0

2 e/ Y/
T* cv s ¥ c e

3 T*/G 5‘91-*/3 5/ gT*"/’G 'l"."/G ) T-T/G

EVM = Ev_‘M ?«{_H—F_/_,/
| M = ="
Wp X
4 POLAR axis . " N

TRAJECTORY

GROUND TRACK

Fre. 11-3. VELOCITY OF MISSILE WiTH RESPECT TO GROUND VECTOR,

198



CONSIDER THE POSITION VECTOR OF THE MISSILE CENTER OF MASS WITH

RESPECT TC AN INERTIAL ORIGIN O AT THE CENTER OF AN OBLATE SPHEROIDAL

EARTH AS SHOWN IN FIGURE 171-3,

THE TIME DERIVATIVE OF R, [s THE VELOCITY OF POINT M WITH RESPECT
To POINT O , THUS IF Ry 15 EXPRESSED IN THE EARTH FRAME Eq,

Ry = Xf, Ei (i =1, 2, 3) (11-90)
AND, ! ' :
ﬁn =V, = EQRM + T, x ﬁm (11-91)
QT
WHERE,

e\ s® . -, fns
aRM =% 8 =5, . (11-92)
. IM .
IF_THE VELOCITY OF THE MISSILE WITH RESPECT TO THE EARTH IS5 EXPRESSED

IN THE TT FRAME AND THE _EI FRAME,

— _ ’ - E.T*® —
E = E E: = * -
VM = UIM E i VM_ T1 * (l“l 93)

TAKING THE TIME DERIVATIVE OF EQUATION (11-93)
B - - _ - -
D Vy - Ea Vy +W X EVM. T*a E\f;* + wT*_x Vi (31-914)

- v - =_—BT. )

E ) ey
AND SOLVING FOR a VM , oNE oBTAINS:
= _

= D%, = L QEI* + (O -8 x 5 (11-95)
M M T* E M

T P :

E E-
WHERE THE EXPRESSION a VM MEANS

M =

Eaﬂ— _ EE‘,O]M E;‘ (i =1, 2, 3)? (11-96)
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1

' THE INERTIAL ACCELERATION OF THE HISSILE IS GIVER AS THE TIME
DERIVATIVE OF THE VELOCITY VECTOR OF EQUATION {1191},

DQ.EM = D VH = TM = EBE‘TM +6J-E XI EVM

DT T b T

. (11-97)

SUBST I TUTING EQUAT iON (11-95) InTo eauaTioN (11-97):

Bu= T OV, o (Bpe = B) % Ty + 2T, x Ty +0e x (B xRy) + (11-98)
__——aT — . . “-%-:;._:_.

THE ANGULAR VELOCITY OF THE TT FRAME WITH RESPECT TO THE EARTH 1S:

‘Grf/s - ET* - T . (11-9?)
THUS, BY EQUATIONS (11;98) anp (11-99):

——, 2"

A, = T‘_‘EQM T* + Braf x WV, + 29 x WV, + 0, x{ & x Ry) . (11-100)

CONSIDER THE SECOND TERM OF THE RIGHT SIDE OF EQUAT 1ON (11-100)

w'_r*/E =‘5-T*XG +Y a/e : (1 1-101)

SINCE THE T* FRAME 1S ORIENTED WITH RESPECT TO THE G, FRAME BY A
PITCH AND A YAW HATRIX OF EQUATION (11-89),

ChL/P 91*/9 3 * wT/G T-§.

(11-102)

THE ANGULAR VELOCITY OF THE G| FRAME WITH RESPECT TO THE €, (EARTH)
FRAME 1S:

Bafe = We - Te (11 103)

THUS, BY USE OF EQUATION (11-101), THE SECOND TERM OF EQUATION
(11-100) MAY BE EXPRESSED AS:

BT*/EXEVM =EJ-T*/G x Vo :;e/z X v."” (11-104)
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WHERE, BY £QuAaTioN (11-89)

G2 o= Syre, TP+ Uy Tp - (11-105)
AND, - 7]
'TT TE ?3
Ve | (8 o . ;
wTT/G s (QT*/G sz/G COT/G) OT*/GCI’DT*/G wT*/G
U 0 0
L'- —
= Uy vTes, TX - Sre/, C¥ras,  Un _T'§ . (11-107)

NEXT, CONSI1GER THE TERMYg/e X Ey ., THE POSITION VECTOR OF THE
MISSILE WITH RESPECT TO THE INERTIAL ORIGIN O EXPRESSED IN THE G, FRAME s,
BY EQUATION (2-1}, 22), ano (2-3}):

'ﬁ# = Zg E3 + (RE + Hg) Es (11-108)
AND |
Vu o= fZy Ty (Rpv i) S5+ T xRy = Ty 4 xRy = N, Ve xRy
(11-109)
WHERE, BY EQUATION (9-38),
Z5 = - 2aF Sin ) - © {11-110)

AND,

R

c A [1 + F sm2)] (11-111)

By equaTions (11-103) ano (11-109)

2y T3 + (Rg + fy) B3 + 8/, X Ry = Ty o (nenz)
WHERE, _

5, = PT* T T* T T Tx

Ye/e Pc £ T* + Q /e + RG[E T3
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AND,

OR,

R, = Zg,(c;,% g; + 553 8y + 653 53) + Rg + H;) 53

Ry = 20"3%3 G + 20,653 Gy + (201633 + Rt H,) 85, (11-113)

By eauaTions (11-113) ano (11-112)

G1 62 G3

PG QS RG

G/E G/E G/E

. _

% 6%3 25 b3 (25 G§3 + Re + Hy)
=%, T+ - E7 ef T o+ Fi e T + (52, + Ry + Rg) &, (11-114) .

i © ]3 0 23 o 0 £ "3

By cauaTions (11-110) anp (11-112)
7, = { - aar. Cos)) - (11-115)
ﬁE = ( BAF 633 Cos)) _ (11-116)
By cauaTion (11-89}

RERE7A R AR R A R

EQUATING COMPONENTS OF EQUATION (11-114) sy use of {11-115), (11-116)

ano {11-117),

.QE/E {: 2AF (653)2 + A + AF ((;53)2 + Hy ‘i+ RG/E' (2aF Gg

3 3 %3)
= EVM ch*/G o GT*/G + 2AF G§3 Cos)I )IG?B
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/ l;AF (GE )2 + A+ H] + Rg/r-: E-?AF G§3 G]E3i| |

E E ©E
VH Slb T*/G + 2AF G33 Cos )) G

- P8, 2 gE GE + 08, 2ar
a/e 33 * %/e

E E
*13 “33

-EVM v T*/G S QT*/G + 2arF Cos ) ) - 2AF G§3 cos))'- GM
_ — ' (11-118)

SOLVING EQUATIONS (11 118) FOR Pg/ s QG/ , AND R/ WHERE RG/

IS SPECLFIED BY CONDITION RE = O, THAT 1S

G

G
QG/E

/e

= PG G = = - = = G — - G =
6= Fa G+ G 8p ¥ 083 =g *Ug/e Twe B3 Fofp 6 + QY S 4RI,

(11-119)

G -
RG/E = —wE E3 . G3

= we Sm) , (11-120}

We SIN )(-EAF G§3 13) + VM SIN i T*/ + 2AF G cos )) G

AF (GE3)2-A-HM

(11-121)

=W, SIN )FEAF G§3 353) + E\!M COS IIJT*/G ;os QT*/G + 2AF G§3 :;052)43153

- 2 '
AF (G§3] + A+ H) (11-122)
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A COORDINATE TRANSFORMATION OF THE ABOVE THREE COMPONENTS FROM THE
T, FRAME TO THE T¥ FRAME YIELDS: '

pr*

ofc

: G G
Po/e © PTels © Crayy * Cel SVrey m Rl Ve, S By

% pS ;. G G
QGZE G/E S_WT*/G C OT*/G + QG/E cV T*/G + RG/E sz.‘./G S QT*/G

15 G G _
RG/E = EG/_ESGT*/G+RG/E coT*/G. {11-123)}

THE TERM Eﬁ/z x =V of eauaTion (11-104) 1s

T* . *
_ i T2 3
we/a x Vy =
T% T* T*
Pa/g % /e Ra/e
Eyl* 0 0
OR,
We/e X Vi Uy Refe T8 - Uy QGZE T3 .

: _ _ .

THE CORI1OLIS ACCELERATION TERM 2 @, X "W, OF EQUATION {11-100) 1s
DESIRED IN COMPONENT FORM 1IN THE T? FRAME, THE ORIENTATION.OF THE T¥
!

FRAME WITH RESPECT 7O THE EI FRAME |5 OBTAINED AS THE PRODUCT OF THE
FOLLDOWING TWC MATRICES:

s ) cL 0
s S )L s ) sL ¢ A £
¢ cL ¢ st s ) (11-125)
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AND ORIENTING THE TT FRAME WITH RESPECT TO THE H, FRAME THROUGH A YAW,
PITCH, ZERO ROLL SEQUENCE - :

c on/H cvy T+, ¢ 97*/ sz*/H -5 Ore/
:Ff = 'SWT*/H _ | c wT*/ i 0 H;
s e, S, Vs, C o,
| ) (11-126)

THE PRODUCT MATR!X

T‘: = T*E) €,

HAS THE NEEDED ELEMENTS T#*E as

-3

Thy = Cony SUpy CA - sep s/

TE% = C¥ T*/ c)
T*E
TE = Sop, SUm/, C)+ Comy s ), (11-127)
CONSEQUENTLY
= TE_ ¥ E * E
€3 T.|3 T} + T23 T + T33 T§
OR,
B I
2w X ET]. = 20 T*E T*E T*E
= £ 13 23 33
£



20, T* |( S 0, sz,/H C)*. C 6ra/. s )) T

+ C WT*/Q c)Tj (11-128)

IT CAN BE SHOWN BY EQUATING THE MATRICES

"'17

1 My | Y1e/e) '.M,.Ip, FGT*/G) My (lllg/H) ‘I-TII

AND, B T . _
Ty o= M (8re/) My v Te/) W,
THAT
Ore/, = S/, . . | {11-129)

"FROM THE FOREGOING EQUATIONS ONE MAY WRITE THE MISSILE TRANSLATIONAL
EQUATIONS OF EQUATion (11-100) as:

Ao Pt Fror TN . (11-130)
M ™ - _
OR,
. ey E—'- -y B - =
TTEUM Ty wT*/z X SVy + 26, X v, =_Ef. + Fyp (11-131)
- d M M .

IN COMPONENT FORM:

e 7% LEuT*| ¥ T T
T 1 o W+ 2% e, Sy e oy DI
£ (g . QM )
+ Uy ( r g.T*/G cv T*/s QGZE *2uwg ¢ wT*/ii. C)) -

3

. (11-132)
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WHERE THE EFFECTIVE GRAVITY TERM

FGE=FNG"”E X ("JE X Ry)

M

VARIOUS REFERENCE FRAMES USED I N

CRIENTING AERODYNAMIC. FORCES

FIVE REFERENCE FRAMES IN WHICH THE AERODYNAMIC FORCES ARE OFTEN
EXPRESSED ARE:

1. BOOY-FIXED AXES By, Bos 53

2. WIND AXES ORIENTED WITH RESPECT ToO EI THROUGH AN

— 5

ANGLE OF ATTACK IN PITCH{ s AND AN ANGLE OF ATTACK IN YAW B -
N e

3. STABILITY AXES

FOR MISSILES HAVING SYMMETRY ABOUT TWO PLANES

Y. AN AX1AL {CHORD) FORCE ALONG THE MISSILE LONGITUDINAL
AX!S AND A NORMAL FORCE,

5. A DRAG FORCE ALONG RELATIVE WIND VECTOR AND A LIFT FORCE
PERPENDICULAR TO THE DRAG FORCE,

LeT FA REPRESENT THE RESULTANT AERODYNAMIC FORCE, |T MAY BE BROKEN
UP INTO COMPONENTS IN ACCORDNACE WITH THE ABOVE REFERENCE FRAMES AS FOLLOWS:

1. THREE COMPONENTS ALONG BODY=F § XED AXES,
-— _ 5 - - - )
Fﬁ = Fﬁ1 B] + FB B + FB B (]2_])

2.. THREE COMPONENTS ALONG WIND AXES ARE DEFINED IN TERMS OF
AN ANGLE OF ATTACK IN P|TCH s AND ANGLE OF ATTACK IN YAW (ALso caLLED
SIDESLIP ANGLE), THUS

= W - w o . W -
Fa = Flp W + FL Wy s FA3 W

A 3 o (12-2)
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CF THE HIND FRAME w

1S CONSIDERED ORIENTED WiITH RESPECT TO THE BODY
FRAME THROUGH A PITCH Qw B AND A YAW ¥ w/s’ ONE OBTAINS

We o= My ww/a) Mp (gw/s) By - (12-3)
SINCE THERE 1S L(TTLE CONSISTENCY IN THE LITERATURE REGARDING THE
51GNS OF oA AND B, THIS PROBLEM MAY BE HANDLED CONSISTENTLY FOR ANY

INDIVIDUAL MISSILE $TuDY. FOR EXAHPLE, LET gw/a

- A {(12-4)
. ANDw U/B —B
THEN £QuATION {12-3) BEcoMES
Vo= M (-B) M (FA) B, (12-5)
AS SHOWN IN FIGURE 12-1, UPON MULTIPLICATION, EQUAT}ON ( 12-5) seEcoMES:
W cB G Y: cBsd -51 )
WE +s Bt CBI' _-l-SO{Sﬁ -52 (12-6)

IF HOWEVER, THE BODY FRAME 1S CONSIDERED TO
TO THE WIND FRAME THROUGH A YAW Wg /i,

Ye/
SHOWN IN FIGURE 12«2, ONE OBTAINS

BE ORIENTED WITH RESPECT
AND A PITCH QB/w =ck 5, AS

B, = My ()M, (B) W, (12-7)
By cBed +sBecd -sk w1

?é = -sB cB 0 né (12-8)
33 B sof +sB soh ek '73

THE MATRIX OF EQUATION { 12-8) IS THE TRANSPOSE (INTERCHANGE OF ROWS
AND COLUMNS) OF THE MATRIX OF EQUATION {12-6).

THE ANGLES AS DEF INED

HEREAFTER.

THE
F ROM ‘E}'B

OR IN TERMS oOf

iN FIGURE 12-2 wWiLL BE USED

IN THIS PAPER

INERT Al AQGULAR VELOCITIES OF THE WIND FRAME MAY BE OBTAINED
=
Erw

+ ﬁ W3 + éﬂ‘Eé,

(12-9)

INERTIAL ORTHOGONAL COMPONENTYS ABOUT WIND AND BODY AXES:
Ps By + Qg By + Rg B3 = P, Wi + Q, Wy + R, W3 + B W3 +L By .

(12-10)
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(%u/6 Yu/6)

3
<
f
8

1

L

BCdk CB S S By

K?

BeA-SB cBs

f

W

Wo

:

3

Sd 0 Cd

" Fig. 12.1. QRIENTATION OF



Yu/w W



DoTTing £QuATION {12-10) BY W, RESPECTIVELY AND UTILIZING EQUATION (12-8)
ONE OBTAINS ' '

p,'d = Pg cﬁco(-éﬁaa 4 SO(Cd\RB + s,é’c;(

£
;3
|

Pg CH{SE+ Qg CE+ SASSR, - K
Pg _(' s + Rg. Cd'ﬁ .

SINCE, GENERALLY, IN SIMULATION STuDiES P, Q , R ARE NOT KNOWN BUT
Pes Qg AND R ARE KNOWN, ONE MAY OBTAIN THE DIRECTION COSINE MATRIX OF
EQuaTION (12-8) FrRoM THE RELATIVE VELOCITY VECTOR COMPONENTS, THE VELOCITY
OF THE MISSILE WITH RESPECT TO THE WIND IS GIVEN AS

pat
£
n

_V”/” = Vi/w Wi =" Uy/w B1 + Yu/u Eea,wm/w 33, {12-12)

WHER Uy /y, Vy/ys AND Wy/w ARE RELATIVE VELOCITY COMPONENTS ALONG 80DY
AXES.

DoTTING EQUATION (12-12) BY B, RESPECTIVELY AND UTIL1ZING EQuaTion (12-8).

Va/w Wi o B = Vu/u ek = U,,,)w (12-13)
Vufu W1 o By = Vs -s_p}) = Vy/uw _ (12-14) .
Vafw Wi . By = Vupu CBSOR= Wy, (12-15)

By equaTions {12-13) anp (12-15)

TaN A= Mo/ (12-16) Smﬁ = Vu/u (12-17)
Uy /w U/ w

AND SMALL ANGLE APPROXIMATIONS ONCKANDﬁgYIELD THE FAMILIAR EXPRESSIONS

A=y
Um /v {12-18)

Un/w

5 = ule S (12-19)
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CE ~ HEN fg .
SINCE Vn/w U/ ¥ ENSCAND {3 ARE SMALL.

"THE DIRECTION COSINE BETWEER THE MISSILE LONGITUDINAL AX1S '3'1 AND
THE RELATIVE VELOCITY VECTOR Wy 13, 8y Figure 12-2, T,;"].g] = CoseX

= CoseACos =B | - (12-20)

EXPAND ING -.oﬂe gy o > ’4. :
o 1 - T AT -1 R ) 1- B€ -
2 ! +?+_.' ( 2! " < %+ ‘51;—. >

_agi._-o'(e +82 N (12-21)
By equaTions (12-i3) anp (12-19)04?':' Wﬁ/w - Vﬁ/w.
. . : _ - 12-22
UE/W ,UI_%/_H ( )
DoTTiNGg EQUATION (12-12) BY ITSELF
V2 = U2 + Va R w2 .
M/ M/w M/ W M/ w (12-23)
Ve = e 1+v8, 4 W2
M/ M/ M/w M/ w
2 2
Yu/w Um/

By equation (12-22)

Vﬁ/w = vﬁ/w |:1+aa$] . (12-24)

ONE OTHER EXPRESSION THAT MAY BE USEFUL 15 OBTAINED BY DOTTING
equaTion {i2-12) sv B;.

VM/w Cos (B, Wy) = Vu/w GOS8 7 = Um/w. - | (12-25)

{3) THE AERODYNAMIC FORCES ARE SOMETIMES GIVEN ALONG STABILITY
— - ‘ —— .
AXes as Fy = F41G1 + FS, G+ oy & 3, (12-26)
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WHERE THE 0“},é?§,£53 UNIT VECTORS ARE DEFINED AS THE INTERMED|ATE.SET

- OF AXES IN GOING FROM THE WIND FRAME W: TO THE BODY FRAME Bf, (E.G.J

i
Si=m (B .

(W) FOR MISSILES HAVING TWO PLANES OF SYMMETRY, THE WIND TUNNEL DATA
MAY BE GIVEN AS FORCE COMPONENTS LYING IN THE PLANE CONTAINING THE RELATIVE
VELOCITY VECTOR AND THE LONGITUDINAL MISSILE AXiS. FOR A MISSILE FLYING AS
SHOWN 1IN FIGURE 12-3,

FIN 1

By _E_LN_LO.EJ.LLE_
(8} =

2~PLANE SYMMETRiCAL MISSILE FLYING INTO PAPER.

Fia, 12-3.

{F:)

THE B; FRAME EQUALS THE F; FRAME,

FOR A CRUCEFORM MISSILE FLYING AS SHOWN IN FIGure 12-b,

Fia., 12-4, 2-PLANE SYMMETRICAL MiSSILE FLYING INTO PAPER,

THE FIN FRAME 1S GIVEN AS
Fio= Mg (45°) 5 . (12-27)

[F A REFERENCE FRAME M| NOW DEFINED AS THE RESULTING FRAME AFTER A

ROLL ABOUT THE F1 = By, AX1S AS SHOWN (N FIGURE 12-5, ONE OBTAINS THE M/

1
FRAME WITH RESPECT TO THE Fi FRAME AS

M= My (B) T (12-28)

213



g oNINIVLINGD
INVId

ph
ONINIVLINOD

INYI

*SAHVY { IINIYITAIY D IWYNAGoday G- oI d

MIIA Hv3IY

4
Mm N.._

21___#



1
"al=]0 B s, A
%3 S A sl (12-29)

By Figure 12-5,

2=W1XD-1--| . 'ﬁ3XW1

l 1 X n1\ \M3 X w]\ (12-30)

WHERE Mp 18 THE UNIT VECTOR NORMAL TO -THE PLANE CONTAINING THE
LONG ITUDINAL BODY AX1S AND THE RELATIVE WIND VECTOR, ASSUMING THE SIDE
FORCE {THE FORCE IN THE Mo DIRECTION} 1S NEGLIGIBLE ONE MAY WRITE THE
AERODYNAMIC FORCE AS TWO COMPONENTS,

Fam P Ty o+ M W o - (12-37)

A3

WHERE F':L 1S CFTEN CALLED AN AXI'AL FORCE AND F’ﬁs 'HHE_NORMAL FORCE:.

THE ANGLE BETWEEN THE M] FRAME AND THE BODY~-F [XED FIN. FRAME, QM/F,'REFERRED
TO IN THLIS PAPER AS THE AERODYNAMIC ROLL ANGLE ﬁa IS GIVEN AS

'rvT3.F3 = Cos f,. {12-32)

METHODS OF OBTAINING ¢A ARE CONSIDERED, BY DEFINITION OF M,

M-| X ﬁe = ﬁs | (12'33)
By cquaTions{12-30},(12-32) ano(12-33)

T‘i] X (E XE])

— Fy = C 12-34
KR 3 P ( 3)
OR SINCE W] X M; = + siNe;
{(-M_pﬁj) Wy = (A3, W) Wy .?3 = Cos Pa
+ SIN dT -

(1.%7) Wi.F3 - (87.9)) (M).F5) = cos B,

+ SINGKT (12-35)
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aND BY EQuaTion (12-29) M. F3= 0
EQuATION (12-35) BECOMES

W, . F3=Cos 8, | (12-36)
+ SINGAT o i ‘

'IF THE nlRecrlo}d“i:o”si‘ﬁt"ﬁi;?s IS OBTAINED AS A FUNCTION OF o , B THEN
BY EQUATION (12-27) AND fauarion.2i{12-7).

F, o= Mg (’*5_’) M, (%) M, (B) W, (12-37)
WHIiCH upo& MULTIPLICATION ;lv;s" —

AN cxXCB CASB -5 X W
F2 =|S45° SXCB - C{SB  SU5° S(SB + cli_5° CB sh5° cotl Wa

Faf \C45® s<CB-sk5% B ch5°ksB- si5® cB ch5® o W3
By equaTions (12-36) ano (12:37) A
Cos QS; oo 45° s CB+ SUSSB.

+ 8 dT

~ (12-38)

IF THE RELATIVE VELOCITY VECTOR IS CONSIDERED

VMW= VigJu W1 = Unfu Fp o+ Ty Fp o+ Wy 3 (12-39)
AND DOTTING BY F3; VM/w ﬁ], F3 = Wy /v

OR w‘l ?3 =-.‘.w'M W

Tl ( 12-_&0)
6.'C95 ¢A - . WH y

VM/Zw Sinety . F12-h1?
BY EQUATION “2;-39) Vafw Coscly = U/, (12-42)
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AND
Vi /v I :
SussTITUTING EquaTions (12-43) nTo (12-41)
Cos ¢A = ~Wy/w VM/w _
Sy Crer h L o
Cos @, = Vy/y

(\ﬁ/w - B/u ) 1/2

EquaTions (12-38) anp (12-%1) HAVE THE UNDESIRABLE QUALITY OF HAVING ZERO

DIVISORS WHENGA [ = O AND CONSEQUENT COMPUTER DIFFICULTIES., THUS, FOR-STUBIES
IN WHICHA ; 1S EXPECTED TO TAKE ON THE VALUE OF 2ERO, ANOTHER EXPRESSION 1S

DESIRABLE,

(5) THE FINAL SET OF AERODYNAMIC FORCES ON MISSILES HAVING TWO PLANES
OF SYMMETRY ARE THOSE COMMONLY REFERRED TO AS A DRAG FORCE ALONG THE RE~-
LATIVE WIND VECTOR AND A LIFT FORCE PERPENDICULAR TO THE DRAG FORCE,

THE UNIT VECTORS DEFINING THIS AERODYNAMIC REFERENCE FRAME ARE DESJIGNATED

AS I: AS SHOWN IN FIGURE 12-5, THE. A] VECTORS ARE ORIENTEP WITH RESPECT TO

THE M; FRAME THROUGH A PiTCH MATRIX,

Ro=M r)m | (12-45)
AND BY EquaTion (12-28) -

Eo= M A) Mo (8,) ¥, B (12-46)
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THE FORCE EQUATION 1S

F.w A & AR
S I A
THUS, WHEN THE AERODYNAMIC FORCES ARE GIVEN [N THE AERODYNAMIC FRAME
Xy AND THE TRANSLATIONAL ACCELERATION EQUATIONS ARE BEING SOLVED tN BODY
AXES, THE DIRECTION COSINES OF EQUATION (12-h6) CAN' BE' GENERATED FROMA ¢
anp §, OBTAINED FROM EQUATIONS (12-25) AND (12-41) respzcTIvELY., As

POINTED OUT PREVIOUSLY, THESE EQUATIONS HAVE A ZERO DIVISOR WHEN TOTAL
ANGLE OF ATTACKO&T = 0,

GRAVITATIONAL FORCE ( TRANSEORMATLONS)...0 (7. 00" v i)

"IN REFERENCE D”'IT 1S SHOWN THAT THE NEWTONIAN MASS ATTRACTION
GRAVITATIONAL FORCE 1851

o=t Reef®y o (3)

WHERE FT AND F ARE FUNCTIONS OF ALTITUDE H, AND GEOCENTRIC LATITUDE J*,

M

SINCE Kp AND 23 LIE IN THE SAME MERIDIAN PLANE AS Hp AND ﬁé (Fia. 13-1)
1T §s '

Frg®3

MASS ATTRACTION VERTICAL

Fia, 13,1,
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EVIDENT THAT Fha CAN BE EXPRESSED AS:

L . _ .;
Fag= oy + "'3 Hy = Faa - (13-2)

"DOTTING THE ABOVE EQUATION BY 'HE

F; =._FNG -._ .l:l-e = F; EE . ITI'3 + Fg ]-('3 . ;1-3 | (13-3)
- . . _

S 13-4)

3 NG H3 Fe Kg o t-|3 + ra K3 . H3 _( 3
UTILSZING THE DIRECTION COSINE MATRIX ORIENTING THE K FRAME WITH RESPECT
To THE H, FRAME OF EQUATION (9-10), ONE OBTAINS

?2 . ,'4'2 - C (D -)*)

K3 . iy = =8 () -)*) | (13-5)

[ ':I3 =5 ()= 2%)

K3 . H3 = c ()‘A*)
By equation (13-4) anp equation (13-5)

FR=ry C(J-%) - 3 S ()-)%)

F; =Fy S {Y-A%) + "3 C(Q-)2%). (13-6)
DOTTING EQUATION (2) WITH Hy AND F3 |

Gy . A, = FH :

tef2t e (13-7)
FNg
'-G— i'l- = FH : L
T3 (13-8)
Frna |

& ., =0 _

WHERE F o = E? . Fg ]1/2 (13-9)
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THRUST FORCE TRANSFORMATIONS
THE THRUST FORCE MAY BE couTRoLLAaLE IN MAGRITUDE AS WELL AS IN

DIRECTION, THE CONTROL OF THE MAGNITUDE 1S CURRENTLY BEST DONE~ BY MEANS oF

VALVES AND L1QUID PROPELLANT. THE LATTER CONTROL MAY BE ACHIEVED THROUGH A

G IMB8ALLED MOTOR OR OTHER SCHEMES, FOR A GIHBALLED MOTOR THE ANGULAR RELATION-

SHIPS DEVELOPED IN SECTION 8 ARE APPLICABLE, "

FOR A CONSTANT THRUST MALALIGNMENT NOT ACTING THROUGH THE MISSILE CENTER
OF MASS, THE ORIENTATION OF THE T, VECTOR (ALONG THE DIRECTION OF THE THRUST
FORCE) WITH RESPECT TO THE BODY AXES B FOR AN EULER SEQUENCE YAW, PITCH IS
sHowN IN FIauURE 14,1

?i
THURST AXIS B
2
gr*or
s .
q_
- Y-
T3=MP(DT)MY(£?T)BI ®3

Fig. 14,1, THRUST MALALIGNMENT ANGLES,

THE DIRECTION COSINE MATRIX 15 GIVEN BY FIGURE 3,2 AS:

T5= My (o) Mo (OT/B) My (9VT/B) 8 - N (th-1)
THE COMPONENTS OF THE THRUST FORCE ALONG BODY AX|S ARE OBTAINED FROM
E _F T _ B = B = £B 3 '
Fr=F: T4 Fip B + F2T Bp w75 B3 (14-2)
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DoTTING EQUATION {14-2) ey 'E‘ RESPECTIVELY ONE OBTAINS

o= Fr SO/ © prfe

]
w
o«

b |

RT/M X

WHERE R

E T
T/M 1S THE MOMEN

1/8B

OGN CAUSED BY

= Fp €O/ S 991/5_

2 3
y8 Z8
T/M T/M
FB Fe-
T
2 ‘73.

(14-3)

THRUST MALALIGNMENT 15 GIVEN BY!

ARM POSITION VECTOR FROM MISSILE C,.G, TO POINT

OF APPLICATION OF THRUST:

[}

bt ( YS/m

=
L

B
r = { Z1/m

- B a B
ZT/M FT2
_ B B
YT/M FT1

(14:5)



DiIiSCUSSION OF NOMENCLATURE

THE NOMENCLATURE UT!ILIZED IN THIS REPORT IS THE RESULT OF A NUMBER OF
CHANGES OVER A FEW YEARS. AN ATTEMPT AT SUGGESTIVE, LOGICAL AND CONSISTENT
SYMBOLS WHICH ARE AT THE SAME TIME SIMILAR (OR THE SAME)} TO THOSE CURRENTLY
AccerTED BY N. A. C. A. HAS BEEN SOUGHT. WHEN DEALING WITH AS BROAD AN ASPECT
OF OYER=ALL WEAPON SYSTEMS AS THIS SERIES OF REPORTS WILL ATTEMPT TC DO, IT
iS5 ONLY NATURAL THAT THE NOMENCLATURE PROBLEM INCREASES IN SI12E. WHEN DEAL-
ING WITH ANY ONE PARTICULAR MISS{LE SYSTEM ONE NEED NOT EMPLOY SO ELABORATE
A SCHEME OF SYMBOLS.

REFERENCE FRAME AS USED [N THIS REPORT REFERS TO A TRIPLE OF BASE VEC-
TORS, WHERELAS COORDINATE SYSTEM REFERS TO A TRIPLE OF BASE VECTORS AND AN
ORIGIN. :

THE DIRECT DEFINITION OF COORDINATE SYSTEMS, AS SUCH, IS AVOIDED 1IN
ORDER TO ADPD FLEXIBILITY TO THE ORIGINS TO BE USED FOR THE VAR!OUS REFERENCE
FRAMES. CONSEQUENTEY} THE SPATIAL RELATIONSHIPS ARE CONSIDERED FROM THE
STANDPOINT OF ANGULAR RELATIONS AND TRANSLATIONAL RELATIONS. THE ANGULAR
ORIENTATIONS OF THE VARIOQUS REFEREMNCE FRAMES OF INTEREST THROUGHOUT THE COM=
PLETE SYSTEM ARE DEVELOPED AND THE DIRECTION COSINE MATRICES AND THE EQUA~
TIONS GENERATING THEM ARE REPEATEDLY DRAWN UPON FOR THE MANY PARTICULAR CASES
ONE MAY CONSIDER.

~ THE FOUR SIMPLE BASIC METHODS REPEATEDLY ENCOUNTERED IN THE MISSILE
LITERATURE FOR GENERATING THE DIRECTION COSINES FOR TRANSFORMATIONS OR ANGULAR
MEASUREMENTS ARE DEVELOPED UNDER THE SECTION ON "GENERAL ANGULAR RELATION-
SHIPS." HAVING ESTABLISHED THE RELATIONSHIPS {THE DIRECTION COSINE MATRICES)
BETWEEN THE VARIOUS ORTHONORMAL BASE VECTORS ONE MAY PROCEED TO RELATE THE
MANY SYSTEM VARJIABLES MEASURED WITH RESPECT TO A PARTICULAR REFERENCE FRAME
TO ANY OTHER REFERENCE FRAME.

-

POSITION VECTORS AND COORDINATES

WHEN COORDINATES ARE UTILIZED AT THE POSITION VECTOR LEVEL ONE MUST
SPECIFY THE COORDINATES OF ONE POINT WITH RESPECT TO A SECOND POINT (TAKEN
AS THE ORIGIN OF THE POSITION VECTOR) AND THE BASE VECTORS {(p1RECTIONS) IN
WHICH THE THREE VARIABLES ARE MEASURED. FOR EXAMPLE, THE POSITION VECTOR OF
THE MISSILE_CENTER OF MASS (POINT M) WiTH RESPECT TO THE TARGET (POINT T) 18
WRITTEN AS Ra/T' IF THE SECOND SUBSCRIPT 1S TAKEN AS THE ORIGIN OF THE 5YS-—
TEM SUCH AS AN INERTIAL POINT O AT THE CENTER OF A ROTATING, NON-TRANSLATING
EARTH, THE SUBSCRIPT O IS LEFT OFF, !.E.,

Ru/o = Ry .

THE COMPONENTS OF A POSITION VECTOR ARE DESIGNATED AS X; (t =1, 2, 3)
orR as {X, Y, Z). A SUPERSCRIPT IN THE UPPER RIGHT HAND CORNER DESIGNATES THE
BAS!S VECTOR TQ WHICH THE VECTOR 15 REFERRED.
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THus,

R ..l
Ru/T = Xu/T Ry + Yu/T Re +.Zu/T R3.= Xiu/T Rj

AND THE SYMBOL Y / DESIGNATES THE SECOND COORDINATE OF THE MISSILE AS
MEASURED FROM THE TARGET AS ORIGIN FOR THE R] BASE VECTORS, I.E. THE DISTANCE
FROM POINT M To POINT T IN THE Rp UNIT VECTOR DIRECTION,

VELOCITY VECTORS AND COMPONENTS

THE COMPONENTS OF A VELOCITY VECTOR ARE DESIGNATED EITHER AS (U, V, W)
OR AS (U1, Us, Ua}. THE LETTER SUBSCRIPTS ON THE R1GHT HAND SiDE DES!GNATE
THE VELOCITY OF ONE POINT WITH RESPECT TO A SECOND POINT E.G., UM/T IS THE
FIRST COMPONENT OF THE VELOCITY OF THE MISSILE WITH RESPECT TQ THE TARGET.
A LEFT HAND SUPERSCRIPT DESI|IGNATES THE REFERENCE FRAME FROM WHICH THE TIME
RATE OF CHANGE {5 OBSERVED, AND A RIGHT SUPERSCRIPT DESIGNATES THE BASIC
VECTORS INTO WHICH THE VECTOR {5 RESOLVED, FOR EXAMPLE:

Ry =V =V 5 = “OR, +@ xR,
2T
V =% & +@. xR, =U, T +@ xR
Mt R, B TWe xRy = U B YW X Ry

E — —e -
= Vy +{Jg x Ry .
THE ABOVE "EXPRESSIONS ARE EQUIVALENT, ALSC THE APPARENT VELOCITIES ARE
EQUAL, THUS,

£ E £

e E— -
Vy = 9R, = X;M E] = U;M E; »
DT

THE ABSENCE OF A LEFT HAND SUPERSCRIPT IMPLIES THE DERIVATIVES AS
OBSERVED FROM AN [NERTJAL FRAME.

IF A COORDINATE TRANSFORMATION IS MADE SAY FROM THE Ei BASIS TO THE Bj

BAS|S

E B -
B

Uiy Ei = Uiy

-
-

A RIGHT HAND SUPERSCRIPT DESIGNATES THE BASIS VECTORS TO WHICH THE VECTOR.

1S REFERRED. THE ABSENCE OF A RIGHT HAND SUPERSCRIPT IMPLIES THE SAME REFER-
ENCE FRAME AS THE LEFT HAND SUPERSCRIPT. A SINGLE LETTER SUBSCRIPT IMPLIES
M/O, THE INERTIAL ORIGIN AT THE CENTER OF THE EARTH. THE ADDITIONAL SYMBOL

223



- i
tS USED FOR W X R, OR SIMILAR TERMS,

Gba X Eﬁ = e/} Vy

WH I CH DESIGNATES THE VELOCITY POINT M wouLD HAVE IF 1T WERE FIXED IN THE
ROTATING E+ FRAME AND OBSERVED BY AN INERT1AL OBSERVER. UTiLIZING THE ABOVE
EXPRESSIONS; THE COMPONENTS ARE WRITTEN AS:

Vu= W *+eg/i VM

- 4 "_o UE —o .
V= Vi, B Y/t Tiw B
THE COMMONLY USED OPERATOR ON A VECTOR
B —- .
[0} = a + w' X
DT Z)T B

IS UTILiZED OCCASIONALLY AND .SHOULD NOT BE CONFUSED WITH THE PART{AL
DERIVATIVE OF A SCALAR FUNCTION.

IN SUMMARY OF MEANING OF LEFT SUPERSCRIPT. .

ci = (PH=°T = (v,

IF 8 = 1 [INERTIAL OBSERVER) NO LEFT SUPERSCRIPT.
&

By

.

ACCELERATION VECTORS AND COMPONENTS

A SIMILAR MEANING IS GIVEN TO THE SECOND TIME DERIVATIVE AND THE SUPER-
SCRIPT FARTHEST TC THE LEFT ODESIGNATES THE REFERENCE FRAME FROM WHICH THE
LAST TIME DERIVATIVE 1S OBSERVED. FOR EXAMPLE!

€B .. cB ,, t . ce | ce _ cB
R=( X) = 8 = ( 0 = &=( a5,

DESIGNATES THE TIME RATE OF CHANGE AS OBSERVED BY AN OBSERVER ON THE C'
FRAME COF THE VECTOR B R R - THE VECTOR B R R IS THE TIME RATE OF CHANGE OF
THE POSITION VECTOR OBSERVED BY AN OBSERVER ON THE E‘ FRAME .

ANGULAR VELOCITY VECTORS

THE SUBSCRIPTS ON THE RIGHT-HAND SIDE OF THE ANGULAR VELOCITY VECTOR
FOR EXAMPLE QJA/B DESIGNATE THE ANGULAR VELOCITY OF REFERENCE FRAME ~ Aj
WITH RESPECT TO REFERENCE FRAME Bi. IF B = 17 (AN INERTIAL FRAME) THEN

Wy/i =
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1S YSED TO IMPLY WiTH RESPECT TO AN INERTIAL FRAME. THE TIME DERIVATIVE
OF AN ANGULAR VELOCITY VECTOR IS5

E & - D w @ )
Wefs = “Ve * ofe X a/s

IF THE E] FRAME 1S AN INERTIAL FRAME, THAT 1S, E = 1, THEN
) = L‘LJ = # .
e W,/ /e ( A/B)

THE COMPONENTS OF THE ANGULAR VELOCITY VECTOR ARE DESIGNATED AS
{P, Q, R) or as (Pl’ Pos P3). SUPERSCRIPTS ARE USED AS DISCUSSED UNDER
YELOCITY VECTORS.

DIRECTION COSINES AND
DIRECTION COSINE MATRICES

DIRECTION COSINE MATRICES ARE DESIGNATED, AS. AN EXAMPLE, AS Ma/e THE
DIRECTION COSINE MATRIX ORIENTING THE Bf FRAME WITH RESPECT TO THE Gy
FRAME, NORMALLY THROUGH POSITIVE ANGLES FOR RIGHT HAND ROTATIONS IN GOING
FROM G] TO THE ET FRAME. THE MATRIX ORIENTING THE 51 FRAME WI|TH RESPECT TO

THE Bj FRAME {SIGNS OF ANGLES REVERSED) 1S
Me/e = M¥a/s
WHERE ASTERISK DESIGNATES THE TRANSPOSE MATRIX.

THE ELEMENTS ARE DESIGNATED AS

G
Mp/s = (et3)

*

WHICH MAY BE READ AS:

G = -

Btsg = By - &5
AND

B — - —

Gji = GJ . Br

- %
CONSEQUENTLY SIENCE MB/G M G/e
B 8

(e1;) = (ey)* = (a3;)
OR

B _ G

G‘Ji = BiJ -
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UNIT VECTORS

(ALL SETS OF UNIT VECTORS ARE SETS OF MUTUALLY ORTHOGONAL UNIT VECTORS.)

I1, :2, A3\'

E‘I’ -E-Z, E3

S, 3 53

F1, ;é, :3

x1
—

_f4 —

=l

AERODYNAH!C FrAME ALONG WHICH AERODYNAMIC FORCES ARE

REFERRED 11 = H], THE DRAG AXI15; Az AND AS IN DIRECTIONS
OF SIDE ARD LIFT FORCE.

Boby FixeDp FRAME B1 ALONG MISSILE LONGITUDINAL AXIS,

32 ALONG MISSILE PITCH AXIS.

CoNTROL AXES

EarTH FIXED REFERENCE FRAME E4 ALONG EARTH'S POLAR

AX1S, Eq AND Ep LIE IN THE EQUATOR AL PLANE.

Fin Fixep FRaMe Fq = By, Fg AND F2 LIE IN THE PLANE

CONTAINING THE FIN PANELS, THUS, FOR A MISSILE WITH A
CRUCIPORM CONF IGURATION F2 AND F3 WOULD BE ROLLED OVER
say 45° rroM THE B AND B3 axes.” (Sec Fieure )

Fixep FRAME FOR GENERAL DISCUSSION r1 FRAME CONS | DERED

A FIXED FRAME (NOT NECESSARILY WITH RESPECT TO INERTIAL
SPACE) AND R; THE ROTATING FRAME.

GROUND FRAME T, PERPENDICULAR TO THE LOCAL TANGENT

PLANE TO THE EARTH, IF A SPHEROIDAL EARTH Gg ALONG
THE "PLuUMB-BOB" VERTICAL. EE AND Eﬁ LIE INTLOCAL
TANGENT PLANE TO EARTH.

HEIGHT OF MISSILE ABOVE SURFACE OF EARTH MEASURED
ALONG‘ﬁ3 = Eé’ H1 LOCAL EAST, Hp. LOCAL NORTH.

EAST, NORTH AND VERTICAL FRAME AT TARGET.

Ty = 153 .

INERTIAL FRAME

LauncH FrRAME

Moving MissiLe FRAME MoviING WITH RESPECT TO THE FIN

FRAME T, ®, = Fy, Wy LIES ALONG THE LINE OF INTERSECTION
OF PLANE CONTAINING By AND THE VELOCITY OF THE MISSILE
WITH RESPECT TO THE WIND AND THE PLANE CONTAINING B

AND By (NORMAL TO LONGITUDINAL BODY AXiS). AERODYNAMIC
FORCES ARE OFTEN GIVEN AS CHORD FORCE ALONG M, AND Two
SIDE FORCES ALONG Mp AND Wig.

PLATFORM FRAME FIXED TO STABLE PLATFORM.
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EULER ANGLES

GYRO FRAME WHEN USED WITH A FREE GYRO TWO OF THE P;
VECTORS LIE IN THE PLANE OF THE ROTOR AND ARE SPINNING
WITH THE GYRO ROTOR.

RapAR FRAME FRAME OF REFERENCE FROM WHICH RADAR AZ)-
MUTH AND ELEVATION ANGLES ARE MEASURED.

SensING AxEs (ACCELEROMETER SENSING Axes ).

SIGHTLINE FRAME S, ALONG RAD|US VECTOR FROM RADAR
SITE TO TRACKED 0BJUECT. {DOUBLE SUBSCRIPTS ARE OFTEN
USED, FOR EXAMPLE S{y, S;; MAY REFER TO THE SIGHTLINE
FRAME FROM THE OBSERVATION POINT TO THE MISS|LE AND
TO THE TARGET RESPECTIVELY.)

PATH TANGENT FRAME {SPACE TRAJECTORY).

Ty TANGENTIAL TO TRAJECTORY.
To PARALLEL TO LOCAL HORIZONTAL.
T3 LIES IN VERTICAL PLANE TO LOCAL HORIZONTAL.

THRUST FraME Ti ALONG THRUST FORCE AXIS.

g

¢ B/G

RELATIVE PATH TaNGENTEAS OBSERVED BY A GROUND FIXED

OBSERVER, l.E. V, = UM Tf .

1

UniT vECTORS, Ke
OTHERW I 5E ?3. ﬁ3

Hf FOR A SPHERICAL EARTH ASSUMPTION,

cos (A~ A*).

il

"RoLL" ANGLE MEASURING ROTATION ABOUT Ry, {(THEe R}
VECTOR AFTER THE FIRST, SECOND OR THIRD HOTATION,
DEPENDING ON THE SEQUENCE OF ROTATIONS.

"PiTcH" ANGLE MEASURING ROTATION ABOUT Ro. {THe Ro
VECTOR AFTER JIH mOTATION), v

"Yaw" ANGLE MEASURING ROTATION ABOUT THE Rg {THE _é
VECTOR AFTER JIH roTaTiON). J

OB/ s QJBé - EULER ANGLES DEFINING THE ORIENTATION
of $ue B0bY FrAME Bf WITH RESPECT TO THE GROUND FRAME
- THE EULER SEQUENCE MUST ALSO BE SPECIFIED, FOR

EXAMPLE YAW, PITCH, ROLL OR

B = My (Fe/c) M, (68/c) My (We/g) a1 In

Ld
1
GENERAL, THE SUBSCRIPTS MEAN
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BXG Bopy FRAME WITH RESPECT TO GROUND
FRAME .

B/, DODY FRAME WiTH RESPECT TO THE
RADAR FRAME.

6/, & FRAME WiTH RESPECT TO Hj FRAME.
(W, 8, #) ORDERING IMPLIES SEQUENCE YAW, PITCH, ROLL ETC.

SOME ANGLES COMMONLY USED ARE!

3y &£ ,aNGLES OF ATTACK IN YAW {SIDESLIP} AND PITCH; OR EULER ANGLES

CRIENTING THE BODY FRAME E} W|TH RESPECT TO THE WIND FRAME 1 FOR THE
" SEQUENCE YAW, PITCH, ZERC ROLL, OR VICE VERSA.

.e. B=We/,
A =6 8/,

AT TOTAL ANGLE OF ATTACK, ANGLE BETWEEN By AND W, VECTOR.

Ba : ROLL ANGLE ASSOCIATED WITH AERODYNAMIC WIND TUNNEL DATA.

THE ORIENTATION OF THE MOVING MISSILE AXES ;i WiTH RESPECT TO THE BODY
FIXED FIN AXES ?j 15 GIVEN IN TERMS OF THE ROLL MATRIX

Mos Mg () T

THE ORIENTATION OF THE AERODYNAMIC AXES K; WITH RESPECT TO THE BODY
FIXED FIN AXES ?f 15 GIVEN IN TERMS OF A ROLL AND PITCH MATRIX.

R My () Mg (B,) F

EULER ANGLES ORJENTING THE MISSILE VELOQCITY VECTOR WITH RESPECT TO A
LOCAL HORIZONTAL FRAME S5AY HT THROUGH A YAW AND A PITCH (ZERO ROLL) MATRIX,

I.E. q}v = QJV/H, J/= e VXH .

A,E  AZIMUTH AND ELEVATION ANGLES OF MISSILE, TARGET ETC., DEPENDING ON
SUBSCRIPTS, FOR EXAMPLE, THE ORIENTATION OF THE MISSILE ~ SIGHTLINE FRAME
S, WITH RESPECT TO THE MISSILE TRACK FRAME Rj, THROUGH A MISSILE YAW AND
A PITCH 1S

gim MP (Q S/R) MY (q)s/g) E;M

WHERE A, +W¥s/p, E, = * 68/,

(SIGN DEPENDING ON WAY DEFINED FOR PARTICULAR SYSTEM).
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Ggs Gyy Gg  GiMBAL PICK-OFF ANGLES ORIENTING A GYRO OR PLATFORM REFERENCE
FRAME WITH RESPECT TO MISSILE BODY AXES. THE SUBSCRIPTS 0, I, 5 DESIGNATE
OUTER, INNER AND SPINNER {FOR A TWO DEGREE OF FREEDOM FREE. GYRO, THE SPINNER
ANGLE 15 NOT UTILIZED AS A PICK-OFF).

P, Q R ANGULAR VELOCITY COMPONENTS ABOUT THE THREE MUTUALLY ORTHOGONAL
AXES OF A REFERENCE FRAME (NUMBER ONE AXIS, NUMBER TWO AXIS, AND NUMBER THREE
AX!S RESPECTIVELY).

Pa, Qg; Rp INERT1AL ANMGULAR VELOCITY COMPONENTS OF THE MISSILE ‘BODY (THE
ABSENCE OF A SECOND SUBSCRIPT I[MPLIES THE INERTIAL FRAME OR ORIGIN). THE
ABSENCE OF A SUPERSCRIPT MEANS THAT THE COMPONENTS THE BODY FRAME RATES ARE
MEASURED IS THE SAME (BODY)} FRAME.

G G G )
PB/R QB/R Rs/n SAME DESIGNATION AS ABOVE EXCEPT THAT THE SECOND SUBSCRIPT
MEANS THE ANGULAR VELOCITY OF THE BODY FRAME (S MEASURED WITH RESPECT TO
THE RADAR AXES {(NOT NECESSARILY AN INERTIAL FRAME). THE SUPERSCRIPT MEANS
THAT THE ANGULAR VELOCITY VECTOR OF THE Bj FRAME WITH RESPECT TO THE'37
FRAME IS RESOLVED INTO COMPONENTS ALONG THE T AXIS DIRECTIONS. Erc., For
OTHER SUB AND SUPERSCRIPTS. SUBSCRIPTS

B/G BODY FRAME WITH RESPECT TO GROUND.
B/E BobY FRAME WITH RESPECT TO EARTH FRAME.
G/E Gf FRAME WITH RESPECT TO THE e FRAME.

POSITION VECTORS

RM PostTioN VECTOR OF THE MISSILE CENTER OF MASS WITH RESPECT TO
THE INERTIAL OCRIGIN AT THE CENTER OF THE EARTH.

RM/R PoSITION VECTOR OF MISSILE C. G. WITH RESPECT TO A RADAR SITE
ORIGIN,

RM/T PoStiTION VECTOR OF THE MISSILE C. G. WITH RESPECT TO THE TARGET.

RT PosiTION YECTOR OF TARGET WITH RESPECT TO THE ORIGIN AT THE
CENTER OF THE EARTH,.

RR Pos1TION VECTOR OF THE RADAR ORIGIN WITH RESPECT TC THE (ENTER
OF THE EARTH.

RA POSITION VECTOR OF ACCELEROMETER WITH RESPECT TO INERTI{AL ORIGIN

AT CENTER OF EARTH.

RECTANGULAR COORD [NATES

R R R
(Xm/T s YMéT , ZMXT) RECTANGULAR COORDINATES OF MISSILE WITH RESPECT
TO THE TARGET COMPONENTS'MEASURED IN THE INSTANTANEOUS Ry, Rp, AND 33
DIRECTIONS RESPECTIVELY.
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(1)
(2)

(3)

THE FOLLOWING GENERAL SCHEME |5 USED.

X, Y, Z DESIGNATE FIRST, SECOND AND THIRD COORDINATES RESPEC-

TIVELY.

SUBSCRIPTS DESIGNATE THE COORDINATE OF POINT M WITH RESPECT TO

POINT R.

THE SUPERSCRIPT DESIGNATES THE REFERENLE FRAME TAKEN AS A BASIS,

I.E-

VELOCITY VECTORS

o R
M

=
-

o
!\ﬂ
x
-

o
o
of -

:

DT

o
n

:

DT

EUy BV EW,

E,,B E,B E/,B
U Vo Wy
8B B .B

UM, VM, WM

Unfr Yhgr Wy

IN GENERAL

DESIGNATES

(1)

REFERENCE FRAME IN WHICH THE COORDINATES ARE MEASURED.

VELDOCITY OF M{SSILE C. G. WITH RESPECT TO THE
ORI1GIN O AT CENTER OF EARTH,

INERT | AL
VELOCITY OF POINT M {MISSILE) WITH RESPECT TO THE TARGET.
VELOCLTY OF . THE '‘MISSILE. WITH RESPECT TO. THE WIND.

VELOCITY: OF MISSILE WITH.RESPECT TO POINT R (RADAR
SITE).

TME THREE COMPONENTS OF THE VELOCITY OF THE MiSSILE
{PoINT M) wITH RESPECT To POINT O (INERTIAL POINT)
EVDRM AS OBSERVED FROM THE EARTH FIXED FRAME E7 AND
TYT  COMPONENTS TAKEN 1N THE Ej DIRECTION.

THE THREE COMPONENTS OF VELOCITY OF POINT M WITH
RESPECT TO POINT © A3 OBSERVED FROM THE EARTH FIXED

ET FRAME AND COMPONENTS TAKEN 1IN THE_Ei DIRECT!ONS,
THE COMPONENTS OF THE VELOCITY OF POINT M WITH RESPECT
TO POINT O AS OBSERVED FROM AN INERT1AL FRAME, AND
COMPONENTS 1IN THE Ei FRAME .

THREE COMPONENTS: OF THE VELOCITY OF THE MISSILE WITH
RESPECT TO THE LOCAL AJR AS OBSERVED FROM AN INERTIAL

FRAME, COMPONENTS IN THE Bi DIRECTIONS.

P/a

U IMPLIES THE FIRST COMPONENT.
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(2) THE SUBSCRIPTS DESIGNATE THE VELOCITY OF POINT P wiTH
RESPECT TO WHAT POINT Q.

(3) THE LEFT SUPERSCRIPT O DESIGNATES THE REFERENCE FRAME
FROM WHICH THE OBSERVAT|ON IS MADE.

(%) THE RIGHT SUPERSCRIPT DESIGNATES THE REFERENCE FRAME
IN WHICH THE COMPONENTS ARE EXPRESSED |.E. THE Cj
'FRAME. ' .

DirecTion CosINE MATRICES

MB/G THE DIRECTION COSINE MATRIX ORJENTING THE BODY FRAME
§f W{TH RESPECT TQ THE GROUND FRAME ET‘
MG/B THE ORIENTATION OF THE'E; FRAME WITH RESPECT TO THE
-E-!T FRAME . '
M*G/ ASTER15K DESIGNATES AS A SUPERSCRIFPT ON A MATRIX THE
B TRANSPOSE. Mg/ = Ma/ FOR ALL DIRECTION COSINE
MATRICES USED HERE. G
Ms/ = (B? ) THE ELEMENTS OF THE MATRIX ORIENTING THE B- REFERENCE
G v FRAME WITH RESPECT TO THE G} FRAME. OTHER SUBSCRIPTS
AS NEEDED.
FORCES
FA RESULTANT AERODYNAMIC FORCE.
B B B
FA1, F“E’ Fa . MAGNITUDES OF THE THREE COMPONENTS OF THE RESULTANT
3 “ AERODYNAMIC FORCE ACTING ON THE MISSILE EXPRESSED IN

THE E; REFERENCE FRAME.

THE SUPERSCRIPT DESIGNATES THE REFERENCE FRAME TO WHICH COMPONENTS
ARE REFERRED, THE OTHER SUPERSCRIPTS ARE!:

W M A
FAI, ;1 ’ FA! DESIGNATING THE THREE AERODYNAMIC FOrCEs (1 =1, 2, 3)

REFERRED TO THE WIND AXES Wy, MOVING AXES Ms, AERODYNAMIC AXES As, (See
Fig. 12.5). .

A W i

FA1 = rA1 =D D coMMONLY CALLED THE DRAG FORCE AND L A LIFT FORCE.
FT THRUST FORCE.
r} MAGNITUDE OF THRUST FORCE ACTING ALONG THRUST AXIS
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MAGN ) TUDES OF THE COMPONENTS OF THE THRUST VECTOR
ACTING ALONG BODY AXES.

NEWTONIAN MASS ATTRACTION GRAVITATIONAL FORCE.
EFFECTIVE GRAVITATIONAL FORCE.

MAGN I TUDES OF THE EFFECTIVE GRAVITATIONAL FORCE IN
THE‘E} REFERENCE FRAME.

INERTIAL ORIGIN AT CENTER OF EARTH, GEGCENTRIC EARTH'S
CENTER.

GEODETIC EARTH CENTER, MOVING POINT ON POLAR AXiS AT
WHICH THE NORMAL TO THE TANGENT PLANE OF THE SPHEROID
INTERSECTS THE POLAR AXIS.

GEOCENTRIC EARTH'S RADIUS.

LENGTH OF THE GREAT NORMAL OF THE SPHEROID (THE GEO-
DETIC RADIUS).

FQUATIONAL RADIUS OF EARTH (SEMI = MAJOR AXI1S).
SEMI - MINOR AXIS OR POLAR RADIUS OF EARTH.

ECCENTRICITY OF THE EARTH;

MEAN POLAR FLATTENING.

MAGN | TUDE OF THE EXTERNAL MOMENTS ABOUT THE BODY AXES
B,, B,y B, RESPECTIVELY.
17 Bps By RESPECTI

THRUST MOMENTS (DUE TO THRUST MALAL IGNMENT).

MACH NUMBER.

MissiLE MAsS.

DyNAMIC PRESSURE.

WiND sPaN.

M;hN AERODYNAMIC CHORD.

DIMENSIONLESS LEFT GCQEFFICIENT.
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CD DIMENSIONLESS DRAG COEFFICIENT.

Cs DIMENSIONLESS SIDE FORCE COEFFICIENT.

Ce DIMENSIONLESS ROLLING MOMENT COEFFICIENT.

Cy DIMENSIONLESS PITCHING MOMENT COEFFICIENT,

Cy DIMENSIONLESS YAWING MOMENT COEFFICIENT.
SYMBOLS |

DIFFERENTIATOR.,

} INTEGRATOR.

© . MuLTiPLIER.

DiFFERENTIAL {SUBTRACTION).
z SUMMATION.
+
o 0 +Wg x OPERATOR ON A VECTOR.
DY X
S SINE.
c CosinE.
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APPENDI X A

RIEMENTARY VECTOR THECRY

_ The few slementary vector properties used in the derivations in this
report can generally be found in the first few sections of any vactor
analysis text. A formal course in vector snalysis 1s not a prersjuisite
to the understanding of this report. 4 brief intuitive feeling for these
slementary properties is attempted in this appendix for those busy, inter-
ested persons who never have time to dig into a vector text.

SCALAR OR DOT PROTUCT

Congider & force fisld ¥ and a space curve C along which a particle
is moving, In freshmen physics the increment of work dw (a scalar guan-
tity) is 3defined as the product of the component of the force in the direc-
tion of displacement and the scalar magnitaude of displacement.

dw = (¥ cos 8)ds {A-1)

Since the force and diaplacement have magnitude and direction, they
are the vector quasntities shown in Fig. (a-1). Eq(A-1) '

F
® &
can be writien as Fiﬂ (A1)
dw= ¥ « ds8 = lﬂ lE:l cos @ {A-2)

wvhere | | means scalar magnitude.

Obviously the scalar dot product iz a scalar juantity and is the scalar
product of & vector and the projection of a second vector onto it, thua

Xl [¥lcos (X, 1) , (A~3)

-7

and

£.%= I%l%lcon 0® = [X] ° .

As s geometrical example consider the position vector R of a point
in terms of its rectangular components. By Pig. (A-2)
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R =xi+yj+¢x (A-4)

Dotting By (A-4) by R,
BE: P s T4y TeyTsam

1812 = 3 + )2 4 o7,

since: Tci = JJ=skk =1
e (A-5)
i*J=ik=k'J=09
If 'il is a constant, then R is the position vector of the points on
a sphere,
Hote also that
RT =X =R cosoqg. (A-6)

iy
AT
v
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alitad A .l

VECTOR,OR CROSS,PRODUCT
Consider the motion of & particle moving on & cirele in the X, Y Plene

of Pig. (“3) ’

_ f:a'(A'3) _

whare the k txis is the axis of rotation. The tangential speed V is
| Ve L]) r o= wr (A-7)

where W is the angular speed 4); Tﬁ; angleuf is not a wector; however

"\ffl? = & is a vector since angular velocity obeys vector laws. The angu-

lar velocity of the particls is a vector along the axis of rotation whose

magnitude is ejual $o the scalar angular speed y~{positive in positive k

direction for counter clockwise rotation as shown in Fig. (A-3).

Assume that the particle is fixed to the earth at a constant latitude

and rotating with the sarth as shown in Fig. (a-d#).

Bjuatorial
Fiane

Pig. (A-d)
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Scalanvise,

r = R sin (90- *') = R cos )\' . (A-8)
Vectoxwise, - - -
R=sk+4rr; (A-9)

vhere 1 is a unit vector in direction of r.

Dotting (A-9) by

R-.r = Ii‘ cos ?f‘-' r (A-10)
‘Utiliging By. (A-8) in (A-7)

¥V < wr = wl ain (90~ h*). (A-11)
Abrreviating Bj(A~11) in vector form

Fear® = @l |El s1n @.8) T, (a-i2)

where T is a unit tangent vector.

Trom the above it is seen that the tangential velocity is tangential to tha
circls on the earth at a constant latitude, and that this vector V, is per-
pendicular to ,‘the plane containing the &) and the position vector R. At
the equator A = 0, and B3(A-11) gives the spsed of a particle fized to

the surface of the earth at the sjuator, j.e. V=wr at ejuator.

In general, for two vectons A and B of Fig. (A-5), the cross pro-
duct A X B is

c
F 3

>

AXB=C o (A-13)

and [2x3Bl= [Al|3] etn (A.B) (A-14)
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For the right handed mutually orthogonal reference frame establlished
by the unit vectorsI, J, k, of Fig. (A-3), one obtains:

1X1 =JXJ “kxk =0

ix3 =k IxT = %k
JXxx =1 £Ex3y = -1
kX1 =3 Txk = 3.

The cross product of the two vectors A and i.

bl # ] + b3k

where A = ay1 4 a3 + as-i and B

is

LX3 = (a1 4 285 + 85k) X (0)1 4 pd 4 k)

EXF = (aghy - bpay)i 4 (sgby-ayby) T 4 (aybp-byap)ic

R E O I

AXB “ler 2 851 (4-25)
b b By

TRIFLE SCALAR FRODUCT

Now consider the velocity vector of Fig. {A-4) vhich,in terms of
& and R is given vy B; {A-13) as

Suppose the instantaneous component of ¥ 4in the direction of 25'1
is desired, where '\?1 is the unit vector along the mimsile longitudinal

axis, then

V- b l?\\ii\ cos @ (A-17)

as shown in sketch,

D
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By By (A-16) and (A-17)
5T =% . (01D, (2-18)

which is the t_riple scalar product, a scalar juantity.

TRIFLE VECTOR PRODUCT

Consider now the freshman physics concept of angular acceleration
for the discussion of Pig. (A-3). If the angular speed is & constant,
then the magnitude of the tangential velocity vector i1s a constant and
the only acceleration of the particle is alon; the negative of tvwe rad-
ina vactnr (toward the polar axis) as shown in Pig (A-6). The magnitude

of the so-called centripetal acteleration is given as

iz 7 (4-19)
.
By By (A-7) and (A-19)
A= v(g :wr(r,!) = VY , (A-20)

In vector form, utilizing By (A-12)
IL=Wx7 = Wx (wxd. (a-21)

The term (U X (W X RB) is the triple vector product, and is a vec-
tor normal to the (U vector and the WX R = V vector. Thus it is seen
that at the ejuator this acceleration vector is directed toward the ori-
gin, while at latitude A", it is centrally directed toward the polar axis
and lies in the plane of the circle tangent to the wvelocity wector, This
vector is shown in any vector text osook to be

TR X x(7 XZ) = (X -Z) ?_(x‘;‘f)'z' (1-22)
Pular axts —\Jd /JE = o x(7x )
— Y 2 i“ WxR (Ta vgenhs | uh;mﬁ
w4
Reftrence P Merdion Plan
Meridian Plawe —1 _,....—Musnlt eridian 4
A — e —— —
E QUATORINL PLiw'e
Fib{A- &)
DIFFEHENT IATION OF VECTORS
-—____‘“ P
i
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Consider the timm rate of change of .tha position vector B when

R(%) i3 a vector function of time, By Fig. (4~7)

R(t) + AR = E(t 3 4t)
AR = E(t +4at) - B(t)
T di Lm AR o LwE(s ¢4 6)-H(). (A-23)
df 4At40 At At
® may also be expresssd as a function of arc length 5, -]f(s))
then
Re) + A = R(s + 4s)

AR

3(3 + As) -ﬂ.n)

8B elmdE zlim Rle +As) W) allm 47 T = T,  (a-2b)
ds &5 A9 AS 45+r AS ,

where T 1 the unit tangent vector,

oo g 4T |- 2

from E; (A-23) and (A-24)

Vadi-=dids = T ds » W (a-25)

From the foregoing ejuations it is obvious that the time rate of
change of position vector is the velocity wvector and is tangential to
the path.

If now B 1is expressed in the ?ireferanca frame, from Fig. (A-8)

- R
le — —— —— —
_ R = I' \ + Iz r2.+ Iara {A-26)
M.
T Taking the derivative of equation
(A-26), and remembering that the ¥ _ refersnce frame is
moving,
b d — —'- ! e ;l- . — -;
%;R__ - xl r'. 2 Ilrl + xzrz_ 4 x‘ra_ 4 x3r3+ I, ra

slin’
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L] . . o _.- _: »
i- = (J{'rl 4 erz 4 xars) + (x1rl + x?_rz + X"r?
L » -
PR - = 3 A-27)
g = ?;, + (:J:IrI +X,T 4 xars) . (

The term é% is called the apparent velocii, and is equal to the vel-
ocity 4R whed 'z'-;_ is an inertial reference frame.

Consider the unit vector -1'-'-(1'.) and ?;'(t +At) at a tin. At later,
vectorally

AT =T (t 4at) - T (v)
ﬁg%ﬁ-‘l‘ = Of +b7T, 4 clr3=pn (A-28)
t 0 ¢

»
(A-28) states that T, is a vector normal to the T, vector as is _
obvious from the Pig., (A-9), for as A t = 0, the incremental vector &/,
approaches ths tangent to a unit circlﬂ'& is an_angonlar rate with respect to
inertial space)l Jm a similar manner ry> and '1'*5 can os expressed as compo-
nents in the r‘-‘ frame : C

&
rl = orI + ar, ) b::g
?a= 6?; + 0?;_ + d;; (A~29)
T,= er + 1, 4 0'1"'s
also - - —
L= T, x Ty {A-30)

and the derivative of E; (A-30) is given by By ( ) IS

. ] L4 ’
T or, X r3 + g X T3 (A-31)

—
r

?,_I(erl + T ) 4 (r.:rI +4 rlr3 )X

. 2
rI = ~eT, - cor, (A-32)
By By (A-29) and (A-32)
a = -¢
(A-33)
P - ~a »
In a aimilar manner
rys T, X T, _ (A-34)
r3= r‘ X rz-trlxr:

Usirg (A-33) and (A-29) in (A-34)

Ty = r I(-arl 4 drsi 4 (a.rz -7r. X T
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Ty = -aT, 4 er, (A-35)
By (A-35) and (A-29)

£ -a (A-36)
Using B; (A-33) and (4-36) in (A-29) one obtains
- a7 -e3 |
=-af, + 45 (4-37)

uul. oils e

= tey-ar;
Using By (A-37) in (A-27) and b = - €y (A-33)
aF = 3F + X (aF, -€F) +X(-aT+ a5y ) + Xz(€F - af] )

1]

“

:é: + T (8- T + (X3~ X39) +T; (X4 - X,Q)
dE=8E , |% T T — -
@ It d & 3 =§n 4 WaT, (4-38)
x, X, Xg t R

Ey (A-34) states that the total time derivative of B is ejual to an
apparent velocity plus a component due to the rotation of the reference
frame with respect to inertial lpa.ce. - -

=dfjl+ef2+ar +ar ""erz“'Rr (4-39)

As a physical example consider tée .. veference frame fixed and ro-

tating at the center of the earth, 1i.e. r~ = 91'
—_ e_
It B= X 5 + x:_e + x3a3

and X:‘(i = 1 2.3) are constants, i.s.
the point P is fixed on the surface
of the earth,

then 9% - T
at

and 0F V. .Wex¥.
t

=7

The magnitude of V 4is

}?’ =R sin (90-\*) = dAr cos A*.
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at the ejiuator

'?"-I = WeR.

s person standing on the ~arth at the ejuator has a velocity

. -zential to the circle genera @d due to the earths’rotation

(ignoring translation of earthj.
DIFFERENTIATION RULES

A summary of_the differentiation rules used in this paper are
If X, Y, and Z are vector functions of t, then

given here,
a(X4¥)= & 4 dy (A-40:
at a% as
a Tlz ar o =
.a?{r(t)x} él% X+4r %_ (A- 1)
L X - N=K.7+%.4d7 (A~ 12)
at at t
L (Xxf) =aX:7+%z d7 ;
at FrT Xz a‘!%. (A- 13

where r(t) of Ej(A~36) is a scalar, Based on the concept of the
derivative of a scalar function f{x) as shown in Fig. (A~8)

Fig. (A-8)

(A-31)

41 - limf(x $+4x)-f(x) = tan @

I " axso  AX
the demonstration of Bys (A-}2) and (4143 ) can be shown as follows:

2lt3
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(-5
o
o

=2 (X44%) . (:z':é'-_) -X.-3

Bu

o

&
A

,.

-1
ct

vhich is B;. (A-42) . E; (A-43) &s shown in a similar manner.
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GENERAL CONSIDERATIONS ON TRANSFORMATIONS

In general, for flight simulation and system synthesis, there
are four useful methods of obtaining the directibn cosine matrix
between two orthonormal reference frames,

{1) The direction cosines can be obtained from the solution
of & system of nine first order differential equations in the direc-
tion cosines (only three of which are independent). The orthogonal
components of inertial angular velocity for both reference frames
must be known.

(2) The direction cosines can bs obtained as trigonometiric
functions of Euler angles orienting the one reference frame with
respect to the second reference frame. The Euler angles are ob—
tained from the simultanecus solutlion of a system of three first
order differential equations in the Euler angles. The orihogonal

components of inertial angular velocity for both reference frames
st be known.

(3) The dirsction cosines between two refersnce frames can be
obtained as the product of two direction cosine matrices when the
direction cosine matrices betwsen oach of the two reference framess
and a common third refersnce frame are known.

For example if
= g@&‘ii
and Fy= u?@EE

then ¥ E‘_ = Mfy
{L)}) Some of the ecfﬁ;n cosines can be obtained from the known
rectangular components of a vector.

Dlrectlon cogines

The motion of the ri frame with respect to the f: frame, in gen-
eral, will consiat of translational motion and rotational motion. KXine-
matically, these two motions may be conaidered separately. If the ori-
gin of the ?} reference frame is translatsd a scalar distance X in the
instantaneous f1 direction, a distance y in the fz direction anc finally
translated a distance z in the f; direction, thes origine of the two fra-
mes may be made to coincide. Since .the directions of the '?1 wvactors
during these three lihear translations are not changed, the angular ori-
entationsof the two frames have not changed, thus the super-position of
origina eases the visualization.
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Consider the orientation of one reference frame ii(i =

respect to m gsecond reference frame fi (£ =1,2.3), where 1y,
(orthonnrmal) The ref-

T, are a mutually orthogonal set of unit vectors.
arence frame fi ia similarly defined.

The unit _vector r1 may be expressed in terms of its thr

1,2, 3) with
!'2 and

ee compo-

nenta 1n the fi refersnra frama (linearly dependence property) as

N = a:ufl + 215f, +3457,

where _are real numbers. Taking the scalar dot prod
E12€1) vy 15, fz. and f3 respsctively and utilizing By (A-5)

{

1 for
Ty

0 for

i1 =3

1 23

. fj

one obtaine

(%-1)

uct of

(&)

or
r . ;i = (1)(1)°°‘<;ifi) = 831 Z comXy
T . fp = (1)(1)°°5(;i,?é)= a1, = Cos 431
r1 £y = (1)(1)cos(ry,T3)= 85 = cos ¥
where ¢, 2,, ana 51 » are shown in Pig. (1-1)
Sa
> I,
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In brief

;'—1 . fi = 81'-} (J =1 2.3) (3'3)

where 813 are called direction cosines of 1y, since they are ejuel to the
cosines of the angles between the unit vector Ty and f1. fz, and £4.

Similar analysis for T3 and r3 Yyields

Tp = Byy Ty ¢ BpoT, 1 8231

oAl 27 ()

T3 = 8q1fy 4 2yl 1 a3l
and

ERERY

Ty « £3 T agy (B5)
The nize scalar ejuations of E)(¥~3) and (B-5) can be written as

T - fy=a (1=1,2,3) (B-6)

TN =10 23)

It is to be noted that the one vector ejuation, Fy(1l-1l) yields three
scalar ejuations By (12).

The three vector ejuations of E;(1-1) and (1-4)
are

Ty T oapfyt e b gty = oayfy
;?. = E-u%; + au-f-z ‘I' 32.3-{3 = azj;:-j (B‘?)
Ty = By fy 4 By, fy 4 agfy = a.sjfj,
or in summation form
-1'; =ﬁ aia?‘j (i :.].2.3)- (]:-8)

J=1

USEFUL PROFERTIES OF THE DIRECTION COSINES

_Taking the scalar product of EL7) vy r‘1 . ?2_.
and rg reaspectively
ﬁ.a=1=%ﬁ4$+%=aﬁ=coa@,ﬁ)
T, - F=1=al 4 agz + a15= :'J-‘-'cos (z,7;) (3-9)
'i":;.-%=1=331+ azz-b 3;3 a;'a?-cos(%,’i:a)

and in drief

)
i
~]
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1= 3% aiy (i1=1,2,3) (B-10)

which ia the well known statement that the sum of the sjuares of the
direction cosines of a line is ejual to unity, or, that if the cosine
of the engle betwesn two lines is ejual to unity, the angle is gero.

_ Yow consider the results of dotting the first ejuality of Ej(%7)
by Ty

-r;- rz-= 0= (an-f;_ + a.n?r‘ + 313?3‘ . (a'?-l;;. + an?;_-l azsi:;)

0= ajan + a_u'az?_ + a8z~ 814 825, (B11)
similarly

n '%‘“if}ha

?,_-Fi=o=,;z5a,5 (B-12)

Ty =°=g-’25 23)

;; ;; =0 :;E;aij 813

%m0 Reg e

The six scalar ejuations of EF11) and§(12) are the familiar state-
ments that the sum of the products of the direction cosines is equal
to gzero when twoe lines are orthogonal,
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Consider nov some results of taking the vector cross product.

RXn=y S(ayfy 4a,f + ayf) X(agf, + 8,f ¥ a5f3)

by Bibad =Ly, £, o

831 %222 4m.
expanding _ - ‘ - -
Ty 5 (8 8y{~f, | 8y 8x M‘a a5 8y
8.32' 3.53 531 % . B3 azz

and dotting with ;;, ;Z and ig reppectively
I [B22 223

82 83| = an= a,8 -8y 855

- f, = = Ap T 8y g -8y 8y
e+ S X 1
rf= = &= 8y 83783 Bz

81 Axn
Thus each element of. the direction cosine matrix is ejual to

ive cofactor, as can be shown for the other six elsments through
similar analysis, yielding:

By T 8y, B3 -8y A3y

812 = 8,3 83 ~By By

B3 T 8y 8y -8y, 8y

B3 = 8,3 By By, By, —
(B 13)

82p 7 8y B3z -8y 8y,

S5 = 85, 87 -8y 83z

By = By 83 ~833 By
Ay T 8y 8 -8 8y,

The results of ejuations (1-—9),(?;-12) and (&-13) will be used 7
the following twe sections.
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ELEMENTARY MATRIX THEORY

let ths a4 of E.l.g('l) be arranged in the foliowing BrITay:’

8, 8, a;
ATpay 8,8
8; 8ayéamn

Such an array which consis%s of three rows and three columns of
numbers (elements) will called a syvars matrix of order 3.

An array having m rows and n columns will be seid to be &n
m X n matrix, Two m x n matrices are defined to be ejual if the cor-
responding elements of the two matrices are ejual, That is, if

)

8, 84 h B
A= (agg) =] 8, . ‘
':"‘m By, Bwn
and )
b, bz re oDy
B =(bgy) ={ oy Dag es o Dem
{)‘M! inﬁl "'ﬁ I
and 1if
A=DB

then
ayj = bij for each i and j, and conversely.

The sum of two m x n matrices is defined to be an m x n matrix,
sach element of which is the sum of thé corresponding elements ot the
two matrices., That is, if

A ¢+ B = D
then

diJ = 834 + byy for each 1 and j.
The product, AR, of two matrices is such

ir

r=1.
where n is the number of columns of the multiplier.

The following two thearems are given without proof:
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(e} Addition of matrices is commutative and asscciative; that
is

A+B=B4+4A
A+ (B+D)=(A+3B)+ 0D

(b) Multiplication of matrices is associative but not in general
commutative; that is

A{Bp) = (AB)S
ABZ BA (in géneral).

Let the sjuare matrix of order n, each elsment, S%. of which
is defined by

& [t i 1=

j =lo 4f ¢ g

be denoted with the symbol I. This matrixz will be called the idemtity
matrix, '

The minor, Mjj, ot the element asy in an 2 x n matrix A =(aij)
is the determinant of the (n - 1) x (n"- 1) matrix which remeins when
elemants of the ith row and jth column are deleted fr n.]’ the matrix A,
The cofactor of the element a;; is defined to be (-1 + “13- Two addi-
tional theorems are given without proof:

{c) To each sjuare matrix, A, of order n, there exists a unijue
matrix, C, such that

CA = AC =1

providing the determinant of the matrix is not gzero, € = (cij) is
called the inverse of A.

(d) (ciJ) =( 131 )where

a(a)

Ajq is the cofactor of the element a4y and d(A) is the determin-
ant of the matrix A.

DIBECTION COSINE MATRICES

Using definitions (a) and (c) for ejuality and multiplications

of matrices of the preceding section, Ej. (1) can be written as a ma-
trix ejuation. For both

and

Fhanz
SR

end 1 x 3 matrices while the matrix

3%
A



APPENDIX B

211 12 213

B21  ®22 23
1 %2 %33
is a sjuare -mau‘!:z;r #nd henéa
r, fn B 9'13‘ 'f-l
5 | = 82 8 eg)f, | = A(fy) (B1b)
;x 831 Bn Ay E_v, |

also

T cosx, cosh cos;.tl\ £

T, | = cosx, cosf, cosh Fz, {B-15)
-:-'3 coscy; cosl;  cosY; i’;

wheres < , 8 i’ ¥ 4, are direction angles 'between the f1 vector and

r, o, ra' I the T, vector mnd ’i . r, and the f3 vector

and rl y Ty, Ty reapectively

The cofactors of the elements 855 of A are found to be
= By Bgym8y3 B3y,
Ay = By 8y=8p B33 (&-16)
Ay = 8y fggfy; 8y,
A1 = 8y, Byymmy; By
b = 8y ey Ay
A= By Bp-ag; 8y
AaT % 88 %,
A3 8y 88y, 8,5
Ay = oy B8y, By
but by (2 =1 3 VA5 = 253

The determinant 4 (A) -

2, 2
21141 + m1zhiz + o3k may e, byt =

_i'.)
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and hence using theorem (d) .
-1 a1l 823 &j31
ATH! Hayp 8 832
B13 @23 8 33
In order to express the vectors f; in terme of ri it is only necessary
to multiply both members of Ejs E@B) on the left by A-l. That is

A1(FL) = A-NAT) = 1(E) = (£))

since 4'1A =I. Thus

£ By 8y 2\ h
0o {8 e BT (B17)
T 813 223 B f\3

Ejuations/(8) and@éiﬂ) are often =xpressed in the following manner:

£ 1, %
T 8y Bin  By3
T, By Baa 823 (1-18)
T 8y 8w A

The product of the two matrices to the right in ejuation (E-17) is
obtained by the sow column rule as a single column matrix.

;1 a,f; +8,% +a,;1;
T3 anfy taph +aulh

Since two matrices are ejual if their elements are ejual, the three
ejuations of Ei.(ﬁh?) can be obtained from Ey.(I-19) by sjuating the
elements of the two matrices of By. (1419).

It is often necessary to obtain the transformation ejuations relat-
ing the vectora of a third reference to those of a first reference
frame when the former frame hae been oriented with respect to a second
frame and when the second frame waes oriented withmapect to the first
frame, That is, if a transformation, Tl orients the r-frame with re-
spect to the f—frame and a transformation, T2, orisnts an §-frame with
respect to the r-frame, the ejuations betwsen the vectors f; and 8y are
easily obtained by matrix multiplication. Let the matrix ejuation re-
lating the sy to the ry be
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4
DS I Bu Bu Pa |7 (819)
;3

If the right member of Bj. {B#%)is substituted for the matrix (ry) in
this s uation, it follows Simt

E; /n ‘G':t?. q& 8y R4 2%
s By B B By b BB | (8200
83 \/331 B2 B B3 B3 /[
or
/ €& & g \/h
| oy & e f) (-21)
B En B [\ |
whare

gn sy B8, 4B ey
82 “Bumy +Rufm, tA; 2,
&z ~Puon 18,85 + B85
€ =Bytn ot +Rsay
8az 531.13;:. -*@;"L‘-‘- +8,; 832
&3 =Byny; 48,823 +85 82
gy oy sy +Fizesn
&2, =‘QB:°12. +Ba8,, 4G5z 83,

&3z “Fyoy *‘6;*2,“-23 +Bigay

a aimple demonstration of why rows and columns can bs interchanged
for the direction cosine matrices for the orthonornl referance
frames used here is as follows

Ty = (a3 | (3-22)
since the inverse matrix (au)-]' s (013)

then multiplydng By. (B-22) vy (e, 3)

25k
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al -
(aiJ)?i = (cid‘)?i = (8“ )(Bqé )= 1fy = 4

) a %2 I
] T ey %2 oy L
fx/ 3y ©32 Cu3 rs

Bjuating eslements of {FH24), the 18t element

L7t +0, 7 +o,T
Dotting By. (B-25) by T

-1 o= A=,
Ejuating the second elemente
f_a=°21;'-1 4057 + 63T
and dotting by ':":l |

fpr F) =y =8,

by B3. (B-&).

and gsimilarly for the other elements

Ciy * 851 .

40
N
A1

(823)

opf to,h +G T

u R + C0Ts .~l~_c23r3-ll.

Cp ¥y ¥ CypT2 t CyyTy

(B-25)

(B24
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